Heidi M Schambra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3298753/publications.pdf Version: 2024-02-01

HEIDI M SCHAMBDA

#	Article	IF	CITATIONS
1	Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. Journal of the American Heart Association, 2022, 11, e025109.	3.7	8
2	PrimSeq: A deep learning-based pipeline to quantitate rehabilitation training. , 2022, 1, e0000044.		6
3	Expectations from the general public about the efficacy of transcranial direct current stimulation for improving motor performance. Brain Stimulation, 2021, 14, 500-502.	1.6	3
4	NE-Motion: Visual Analysis of Stroke Patients Using Motion Sensor Networks. Sensors, 2021, 21, 4482.	3.8	3
5	Corticoreticulospinal tract neurophysiology in an arm and hand muscle in healthy and stroke subjects. Journal of Physiology, 2021, 599, 3955-3971.	2.9	13
6	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
7	Direct In Vivo MRI Discrimination of Brain Stem Nuclei and Pathways. American Journal of Neuroradiology, 2020, 41, 777-784.	2.4	10
8	Towards data-driven stroke rehabilitation via wearable sensors and deep learning. Proceedings of Machine Learning Research, 2020, 126, 143-171.	0.3	3
9	The Pragmatic Classification of Upper Extremity Motion in Neurological Patients: A Primer. Frontiers in Neurology, 2019, 10, 996.	2.4	7
10	Differential Poststroke Motor Recovery in an Arm Versus Hand Muscle in the Absence of Motor Evoked Potentials. Neurorehabilitation and Neural Repair, 2019, 33, 568-580.	2.9	32
11	Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Annals of Neurology, 2019, 85, 502-513.	5.3	85
12	A Taxonomy of Functional Upper Extremity Motion. Frontiers in Neurology, 2019, 10, 857.	2.4	30
13	Reply: Further evidence for a non-cortical origin of mirror movements after stroke. Brain, 2019, 142, e2-e2.	7.6	0
14	Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in Chronic Stroke. Neurorehabilitation and Neural Repair, 2018, 32, 295-308.	2.9	40
15	Evidence for a subcortical origin of mirror movements after stroke: a longitudinal study. Brain, 2018, 141, 837-847.	7.6	47
16	Repetitive Transcranial Magnetic Stimulation for Upper Extremity Motor Recovery: Does It Help?. Current Neurology and Neuroscience Reports, 2018, 18, 97.	4.2	15
17	Randomized Sham-Controlled Trial of Navigated Repetitive Transcranial Magnetic Stimulation for Motor Recovery in Stroke. Stroke, 2018, 49, 2138-2146.	2.0	113
18	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 2017, 128, 589-603.	1.5	275

Heidi M Schambra

#	Article	IF	CITATIONS
19	A Short and Distinct Time Window for Recovery of Arm Motor Control Early After Stroke Revealed With a Global Measure of Trajectory Kinematics. Neurorehabilitation and Neural Repair, 2017, 31, 552-560.	2.9	82
20	The neurophysiological effects ofÂsingle-dose theophylline in patients withÂchronic stroke: A double-blind, placebo-controlled, randomized cross-overÂstudy. Restorative Neurology and Neuroscience, 2016, 34, 799-813.	0.7	2
21	Recovery and Rehabilitation after Intracerebral Hemorrhage. Seminars in Neurology, 2016, 36, 306-312.	1.4	42
22	The reliability of repeated TMS measures in older adults and in patients with subacute and chronic stroke. Frontiers in Cellular Neuroscience, 2015, 9, 335.	3.7	104
23	Low and moderate prenatal ethanol exposures of mice during gastrulation or neurulation delays neurobehavioral development. Neurotoxicology and Teratology, 2015, 51, 1-11.	2.4	21
24	Building up Analgesia in Humans via the Endogenous μ-Opioid System by Combining Placebo and Active tDCS: A Preliminary Report. PLoS ONE, 2014, 9, e102350.	2.5	71
25	Reward Improves Long-Term Retention of a Motor Memory through Induction of Offline Memory Gains. Current Biology, 2011, 21, 557-562.	3.9	265
26	Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. Journal of Neurophysiology, 2011, 106, 652-661.	1.8	127
27	Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron, 2010, 66, 198-204.	8.1	1,177
28	Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1590-1595.	7.1	1,168
29	Asymmetric Reversible Posterior Leukoencephalopathy Syndrome. Neurocritical Care, 2006, 4, 245-247.	2.4	5