Carolyn B Coyne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3298025/publications.pdf

Version: 2024-02-01

99 papers 12,939 citations

44069 48 h-index 96 g-index

147 all docs

147 docs citations

147 times ranked

23671 citing authors

#	Article	IF	CITATIONS
1	Infections at the maternal–fetal interface: an overview of pathogenesis and defence. Nature Reviews Microbiology, 2022, 20, 67-82.	28.6	161
2	Innate immune defenses at the maternal-fetal interface. Current Opinion in Immunology, 2022, 74, 60-67.	5.5	24
3	Enterovirus Replication and Dissemination Are Differentially Controlled by Type I and III Interferons in the Gastrointestinal Tract. MBio, 2022, 13 , .	4.1	4
4	BPIFB3 interacts with ARFGAP1 and TMED9 to regulate non-canonical autophagy and RNA virus infection. Journal of Cell Science, $2021,134,.$	2.0	5
5	Uterine NK cell education: Learning the ropes in pregnancy. Immunity, 2021, 54, 1102-1104.	14.3	5
6	Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to contemporary EV-D68 isolates. ELife, 2021, 10, .	6.0	20
7	A standardized definition of placental infection by SARS-CoV-2, a consensus statement from the NationalÂlnstitutes of Health/Eunice Kennedy Shriver NationalÂlnstitute of Child Health and Human DevelopmentÂSARS-CoV-2 Placental Infection Workshop. American Journal of Obstetrics and Gynecology, 2021, 225, 593-599.e2.	1.3	59
8	Human FcRn expression and Type I Interferon signaling control Echovirus 11 pathogenesis in mice. PLoS Pathogens, 2021, 17, e1009252.	4.7	12
9	Inflammasome signaling in human placental trophoblasts regulates immune defense against <i>Listeria monocytogenes</i> infection. Journal of Experimental Medicine, 2021, 218, .	8.5	36
10	The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses, 2021, 13, 20.	3.3	28
11	Pregnancy influences immune responses to SARS-CoV-2. Science Translational Medicine, 2021, 13, eabm2070.	12.4	18
12	Gatekeepers of the fetus: Characterization of placental macrophages. Journal of Experimental Medicine, 2021, 218, .	8.5	13
13	Toxoplasma gondii <i>GRA28</i> Is Required for Placenta-Specific Induction of the Regulatory Chemokine CCL22 in Human and Mouse. MBio, 2021, 12, e0159121.	4.1	15
14	Dengue Virus Targets Nrf2 for NS2B3-Mediated Degradation Leading to Enhanced Oxidative Stress and Viral Replication. Journal of Virology, 2020, 94, .	3.4	32
15	Imaging-Based Reporter Systems to Define CVB-Induced Membrane Remodeling in Living Cells. Viruses, 2020, 12, 1074.	3.3	2
16	Unc-13 homologue D mediates an antiviral effect of the chromosome 19 microRNA cluster miR-517a. Journal of Cell Science, 2020, 134, .	2.0	3
17	Inhibiting Ebola virus and SARS-CoV-2 entry. Science, 2020, 370, 167-168.	12.6	6
18	Recommendations for future university pandemic responses: What the first COVID-19 shutdown taught us. PLoS Biology, 2020, 18, e3000889.	5.6	21

#	Article	IF	CITATIONS
19	BPIFB3 Regulates Endoplasmic Reticulum Morphology To Facilitate Flavivirus Replication. Journal of Virology, 2020, 94, .	3.4	27
20	An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. Cell Host and Microbe, 2020, 27, 428-440.e9.	11.0	26
21	Interferon lambda protects the female reproductive tract against Zika virus infection. Nature Communications, 2019, 10, 280.	12.8	83
22	Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion. Viruses, 2019, 11, 460.	3.3	67
23	Type III interferon signaling restricts enterovirus 71 infection of goblet cells. Science Advances, 2019, 5, eaau4255.	10.3	77
24	The neonatal Fc receptor is a pan-echovirus receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3758-3763.	7.1	47
25	Immune responses at the maternal-fetal interface. Science Immunology, 2019, 4, .	11.9	380
26	RIPK3: Beyond Necroptosis. Immunity, 2019, 50, 1-3.	14.3	31
27	Emerging arboviruses and implications for pediatric transplantation: A review. Pediatric Transplantation, 2019, 23, e13303.	1.0	9
28	The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Autophagy, 2018, 14, 898-912.	9.1	30
29	Zika virus–related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Science Translational Medicine, 2018, 10, .	12.4	85
30	Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling. Placenta, 2018, 61, 33-38.	1.5	40
31	Human Placental Syncytiotrophoblasts Restrict <i>Toxoplasma gondii</i> Attachment and Replication and Respond to Infection by Producing Immunomodulatory Chemokines. MBio, 2018, 9, .	4.1	54
32	Type I interferons instigate fetal demise after Zika virus infection. Science Immunology, 2018, 3, .	11.9	212
33	Cross-Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental Macrophages. Cell Host and Microbe, 2018, 24, 731-742.e6.	11.0	107
34	Rift Valley fever virus induces fetal demise in Sprague-Dawley rats through direct placental infection. Science Advances, 2018, 4, eaau9812.	10.3	39
35	Horsepox: Framing a dual use research of concern debate. PLoS Pathogens, 2018, 14, e1007344.	4.7	4
36	Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infection and Immunity, 2018, 86, .	2.2	108

3

#	Article	IF	Citations
37	Type III Interferons in Antiviral Defenses at Barrier Surfaces. Trends in Immunology, 2018, 39, 848-858.	6.8	100
38	Stem Cell-Derived Models of Viral Infections in the Gastrointestinal Tract. Viruses, 2018, 10, 124.	3.3	18
39	STING'ing Zika virus in neurons. Nature Microbiology, 2018, 3, 975-976.	13.3	2
40	Closing in on a Zika virus vaccine. Nature Reviews Immunology, 2018, 18, 89-90.	22.7	8
41	Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy, 2017, 13, 322-332.	9.1	152
42	Enteroviruses infect human enteroids and induce antiviral signaling in a cell lineage-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1672-1677.	7.1	122
43	Screening Bioactives Reveals Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus. Cell Reports, 2017, 18, 804-815.	6.4	144
44	Microbial Vertical Transmission during Human Pregnancy. Cell Host and Microbe, 2017, 21, 561-567.	11.0	280
45	The expression level of C19MC miRNAs in early pregnancy and in response to viral infection. Placenta, 2017, 53, 23-29.	1.5	37
46	Gestational Stage and IFN-λ Signaling Regulate ZIKV Infection In Utero. Cell Host and Microbe, 2017, 22, 366-376.e3.	11.0	137
47	Organotypic models of type III interferon-mediated protection from Zika virus infections at the maternal–fetal interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9433-9438.	7.1	79
48	A Three-Dimensional Cell Culture System To Model RNA Virus Infections at the Blood-Brain Barrier. MSphere, 2017, 2, .	2.9	42
49	A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance. Science Advances, 2016, 2, e1501462.	10.3	86
50	Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection. Cell Host and Microbe, 2016, 19, 705-712.	11.0	464
51	Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta, 2016, 47, 86-95.	1.5	82
52	Zika virus — reigniting the TORCH. Nature Reviews Microbiology, 2016, 14, 707-715.	28.6	293
53	A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells. MSphere, 2016, $1,\dots$	2.9	41
54	Mechanisms of Zika Virus Infection and Neuropathogenesis. DNA and Cell Biology, 2016, 35, 367-372.	1.9	40

#	Article	IF	CITATIONS
55	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
56	Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis, 2016, 37, 522-529.	2.8	75
57	MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-l–MAVS-Independent IFN Induction. Journal of Immunology, 2016, 196, 3877-3886.	0.8	60
58	BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication. Journal of Virology, 2016, 90, 5098-5107.	3.4	32
59	Respiratory syncytial virus infection enhances <i>Pseudomonas aeruginosa</i> biofilm growth through dysregulation of nutritional immunity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1642-1647.	7.1	144
60	The Tree(s) of Life: The Human Placenta and My Journey to Learn More about It. PLoS Pathogens, 2016, 12, e1005515.	4.7	7
61	Unc93b Induces Apoptotic Cell Death and Is Cleaved by Host and Enteroviral Proteases. PLoS ONE, 2015, 10, e0141383.	2.5	12
62	Autophagy Modulates Articular Cartilage Vesicle Formation in Primary Articular Chondrocytes. Journal of Biological Chemistry, 2015, 290, 13028-13038.	3.4	28
63	Catch Me If You Can: The Link between Autophagy and Viruses. PLoS Pathogens, 2015, 11, e1004685.	4.7	60
64	The Function of TrophomiRs and Other MicroRNAs in the Human Placenta. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a023036.	6.2	64
65	MicroRNAs in placental health and disease. American Journal of Obstetrics and Gynecology, 2015, 213, S163-S172.	1.3	165
66	RIP3 Regulates Autophagy and Promotes Coxsackievirus B3 Infection of Intestinal Epithelial Cells. Cell Host and Microbe, 2015, 18, 221-232.	11.0	59
67	Human trophoblasts confer resistance to viruses implicated in perinatal infection. American Journal of Obstetrics and Gynecology, 2015, 212, 71.e1-71.e8.	1.3	92
68	ADAP2 Is an Interferon Stimulated Gene That Restricts RNA Virus Entry. PLoS Pathogens, 2015, 11, e1005150.	4.7	36
69	Regulation of Mitochondrial Antiviral Signaling (MAVS) Expression and Signaling by the Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Protein Gp78. Journal of Biological Chemistry, 2014, 289, 1604-1616.	3.4	33
70	The Placenta as a Barrier to Viral Infections. Annual Review of Virology, 2014, 1, 133-146.	6.7	96
71	BPIFB3 Regulates Autophagy and Coxsackievirus B Replication through a Noncanonical Pathway Independent of the Core Initiation Machinery. MBio, 2014, 5, e02147.	4.1	32
72	Death waits for no man – Does it wait for a virus? How enteroviruses induce and control cell death. Cytokine and Growth Factor Reviews, 2014, 25, 587-596.	7.2	26

#	Article	IF	CITATIONS
73	Antiviral Activity of Human OASL Protein Is Mediated by Enhancing Signaling of the RIG-I RNA Sensor. Immunity, 2014, 40, 936-948.	14.3	201
74	Picornavirus Entry. Advances in Experimental Medicine and Biology, 2013, 790, 24-41.	1.6	47
75	Mechanisms of MAVS Regulation at the Mitochondrial Membrane. Journal of Molecular Biology, 2013, 425, 5009-5019.	4.2	149
76	Enter at your own risk: How enteroviruses navigate the dangerous world of pattern recognition receptor signaling. Cytokine, 2013, 63, 230-236.	3.2	34
77	Human placental trophoblasts confer viral resistance to recipient cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12048-12053.	7.1	398
78	Lipid Raft- and Src Family Kinase-Dependent Entry of Coxsackievirus B into Human Placental Trophoblasts. Journal of Virology, 2013, 87, 8569-8581.	3.4	29
79	Autophagy as a mechanism of antiviral defense at the maternal–fetal interface. Autophagy, 2013, 9, 2173-2174.	9.1	50
80	Focal Adhesion Kinase Is a Component of Antiviral RIG-I-like Receptor Signaling. Cell Host and Microbe, 2012, 11, 153-166.	11.0	43
81	Comparative RNAi Screening Reveals Host Factors Involved in Enterovirus Infection of Polarized Endothelial Monolayers. Cell Host and Microbe, 2011, 9, 70-82.	11.0	65
82	The Coxsackievirus B 3Cpro Protease Cleaves MAVS and TRIF to Attenuate Host Type I Interferon and Apoptotic Signaling. PLoS Pathogens, 2011, 7, e1001311.	4.7	249
83	Retinoic Acid-induced Gene-I (RIG-I) Associates with Nucleotide-binding Oligomerization Domain-2 (NOD2) to Negatively Regulate Inflammatory Signaling. Journal of Biological Chemistry, 2011, 286, 28574-28583.	3.4	42
84	Calcium signals and calpain-dependent necrosis are essential for release of coxsackievirus B from polarized intestinal epithelial cells. Molecular Biology of the Cell, 2011, 22, 3010-3021.	2.1	42
85	The Actin Cytoskeleton as a Barrier to Virus Infection of Polarized Epithelial Cells. Viruses, 2011, 3, 2462-2477.	3.3	49
86	RNAi Screening in Mammalian Cells to Identify Novel Host Cell Molecules Involved in the Regulation of Viral Infections. Methods in Molecular Biology, 2011, 721, 397-405.	0.9	5
87	Release of Intracellular Calcium Stores Facilitates Coxsackievirus Entry into Polarized Endothelial Cells. PLoS Pathogens, 2010, 6, e1001135.	4.7	54
88	Tight Junction Proteins Claudin-1 and Occludin Control Hepatitis C Virus Entry and Are Downregulated during Infection To Prevent Superinfection. Journal of Virology, 2009, 83, 2011-2014.	3.4	303
89	Dynamin- and Lipid Raft-Dependent Entry of Decay-Accelerating Factor (DAF)-Binding and Non-DAF-Binding Coxsackieviruses into Nonpolarized Cells. Journal of Virology, 2009, 83, 11064-11077.	3.4	58
90	The Distinct Roles of JAM-A in Reovirus Pathogenesis. Cell Host and Microbe, 2009, 5, 3-5.	11.0	5

#	Article	IF	CITATIONS
91	Correlation of the Tight Junction-like Distribution of Claudin-1 to the Cellular Tropism of Hepatitis C Virus. Journal of Biological Chemistry, 2008, 283, 8643-8653.	3.4	95
92	Coxsackievirus Entry across Epithelial Tight Junctions Requires Occludin and the Small GTPases Rab34 and Rab5. Cell Host and Microbe, 2007, 2, 181-192.	11.0	213
93	Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO Journal, 2007, 26, 4016-4028.	7.8	115
94	Virus-Induced Abl and Fyn Kinase Signals Permit Coxsackievirus Entry through Epithelial Tight Junctions. Cell, 2006, 124, 119-131.	28.9	484
95	COPI Activity Coupled with Fatty Acid Biosynthesis Is Required for Viral Replication. PLoS Pathogens, 2006, 2, e102.	4.7	111
96	CAR: A virus receptor within the tight junction. Advanced Drug Delivery Reviews, 2005, 57, 869-882.	13.7	210
97	The Coxsackievirus and Adenovirus Receptor Interacts with the Multi-PDZ Domain Protein-1 (MUPP-1) within the Tight Junction. Journal of Biological Chemistry, 2004, 279, 48079-48084.	3.4	109
98	Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. ELife, 0, 11, .	6.0	13
99	An <i>In Vivo</i> Model of Echovirus-Induced Meningitis Defines the Differential Roles of Type I and Type III Interferon Signaling in Central Nervous System Infection. Journal of Virology, 0, , .	3.4	2