Simon J Haward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3297915/publications.pdf

Version: 2024-02-01

		172457	223800
82	2,422 citations	29	46
papers	citations	h-index	g-index
92	92	92	1710
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Reduced and increased flow resistance in shear-dominated flows of Oldroyd-B fluids. Journal of Non-Newtonian Fluid Mechanics, 2022, 300, 104698.	2.4	11
2	Torsional instability of constant viscosity elastic liquid bridges. Soft Matter, 2022, 18, 1965-1977.	2.7	4
3	Non-Newtonian flows and instabilities in 3D glass microfluidic devices. , 2022, 2, 100023.		O
4	Upstream wall vortices in viscoelastic flow past a cylinder. Soft Matter, 2022, 18, 4868-4880.	2.7	6
5	Evaluation of constitutive models for shear-banding wormlike micellar solutions in simple and complex flows. Journal of Non-Newtonian Fluid Mechanics, 2022, 307, 104855.	2.4	5
6	Alignment of Colloidal Rods in Crowded Environments. Macromolecules, 2022, 55, 5610-5620.	4.8	10
7	10.1063/5.0031712.5., 2021, , .		0
8	10.1063/5.0031712.6., 2021,,.		0
9	Tristability in Viscoelastic Flow Past Side-by-Side Microcylinders. Physical Review Letters, 2021, 126, 054501.	7.8	29
10	Torsional fracture of viscoelastic liquid bridges. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
11	Microtomographic particle image velocimetry measurements of viscoelastic instabilities in a three-dimensional microcontraction. Journal of Fluid Mechanics, 2021, 923, .	3.4	11
12	Stagnation points control chaotic fluctuations in viscoelastic porous media flow. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
13	Structure-property relationship of a soft colloidal glass in simple and mixed flows. Journal of Colloid and Interface Science, 2021, 601, 454-466.	9.4	15
14	Periodic fluctuations of streamwise vortices in inertia-dominated intersecting flows. Physics of Fluids, 2021, 33, .	4.0	16
15	Effects of Shearing and Extensional Flows on the Alignment of Colloidal Rods. Macromolecules, 2021, 54, 4176-4185.	4.8	33
16	Bifurcations in flows of complex fluids around microfluidic cylinders. Lab on A Chip, 2021, 21, 4041-4059.	6.0	14
17	Purely Elastic Fluid–Structure Interactions in Microfluidics: Implications for Mucociliary Flows. Small, 2020, 16, e1903872.	10.0	27
18	Viscous flow through microfabricated axisymmetric contraction/expansion geometries. Experiments in Fluids, 2020, 61, 1.	2.4	17

#	Article	IF	CITATIONS
19	Fluid–structure interactions: From engineering to biomimetic systems. Physics of Fluids, 2020, 32, 120401.	4.0	3
20	Asymmetric flows of complex fluids past confined cylinders: A comprehensive numerical study with experimental validation. Physics of Fluids, 2020, 32, 053103.	4.0	48
21	Asymmetric flow of polymer solutions around microfluidic cylinders: Interaction between shear-thinning and viscoelasticity. Journal of Non-Newtonian Fluid Mechanics, 2020, 278, 104250.	2.4	40
22	Intracellular Nanomaterial Delivery <i>via</i> Spiral Hydroporation. ACS Nano, 2020, 14, 3048-3058.	14.6	45
23	Transition between solid and liquid state of yield-stress fluids under purely extensional deformations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12611-12617.	7.1	39
24	Optimised multi-stream microfluidic designs for controlled extensional deformation. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	11
25	Flow of wormlike micellar solutions around microfluidic cylinders with high aspect ratio and low blockage ratio. Soft Matter, 2019, 15, 1927-1941.	2.7	51
26	Microfluidic analog of an opposed-jets device. Applied Physics Letters, 2019, 114, 223701.	3.3	7
27	Heterogeneous flow inside threads of low viscosity fluids leads to anomalous long filament lifetimes. Scientific Reports, 2019, 9, 7110.	3.3	7
28	Controlled symmetry breaking and vortex dynamics in intersecting flows. Physics of Fluids, 2019, 31, .	4.0	18
29	Secondary flows of viscoelastic fluids in serpentine microchannels. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	29
30	3D-printed glass microfluidics for fluid dynamics and rheology. Current Opinion in Colloid and Interface Science, 2019, 43, 1-14.	7.4	46
31	Coupling of vortex breakdown and stability in a swirling flow. Physical Review Fluids, 2019, 4, .	2.5	15
32	Steady viscoelastic flow around high-aspect-ratio, low-blockage-ratio microfluidic cylinders. Journal of Non-Newtonian Fluid Mechanics, 2018, 254, 23-35.	2.4	49
33	Elastic modifications of an inertial instability in a 3D cross-slot. Journal of Non-Newtonian Fluid Mechanics, 2018, 262, 12-24.	2.4	13
34	"Phase diagram―for viscoelastic Poiseuille flow over a wavy surface. Physics of Fluids, 2018, 30, .	4.0	12
35	Microscopic investigation of vortex breakdown in a dividing T-junction flow. Physical Review Fluids, 2018, 3, .	2.5	20
36	Inertioelastic Poiseuille flow over a wavy surface. Physical Review Fluids, 2018, 3, .	2.5	9

#	Article	IF	Citations
37	Publisher's Note: Poiseuille flow over a wavy surface [Phys. Rev. Fluids 2 , 124102 (2017)]. Physical Review Fluids, 2018, 3, .	2.5	0
38	10.1063/1.5057392.1., 2018,,.		0
39	Relaxation time of dilute polymer solutions: A microfluidic approach. Journal of Rheology, 2017, 61, 327-337.	2.6	72
40	In-situ shear-banding quantification of surfactant solutions in straight microfluidic channels. Journal of Rheology, 2017, 61, 769-783.	2.6	6
41	Inertioelastic Flow Instability at a Stagnation Point. Physical Review X, 2017, 7, .	8.9	25
42	Poiseuille flow over a wavy surface. Physical Review Fluids, 2017, 2, .	2.5	6
43	Microfluidic extensional rheometry using stagnation point flow. Biomicrofluidics, 2016, 10, 043401.	2.4	77
44	Flow of wormlike micellar solutions around confined microfluidic cylinders. Soft Matter, 2016, 12, 8666-8681.	2.7	54
45	Tricritical spiral vortex instability in cross-slot flow. Physical Review E, 2016, 93, 031101.	2.1	42
46	Elastic instabilities in planar elongational flow of monodisperse polymer solutions. Scientific Reports, 2016, 6, 33029.	3.3	80
47	Spreading of miscible liquids. Physical Review Fluids, 2016, 1, .	2.5	8
48	The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter, 2015, 11, 3251-3270.	2.7	82
49	Viscoelastic flow development in planar microchannels. Microfluidics and Nanofluidics, 2015, 19, 1123-1137.	2.2	11
50	Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt. Journal of Rheology, 2015, 59, 1229-1259.	2.6	32
51	Monitoring of cellulose depolymerization in 1-ethyl-3-methylimidazolium acetate by shear and elongational rheology. Carbohydrate Polymers, 2015, 117, 355-363.	10.2	36
52	Synovial Fluid Response to Extensional Flow: Effects of Dilution and Intermolecular Interactions. PLoS ONE, 2014, 9, e92867.	2,5	11
53	Characterization of hyaluronic acid and synovial fluid in stagnation point elongational flow. Biopolymers, 2014, 101, 287-305.	2.4	30
54	Spatiotemporal flow instabilities of wormlike micellar solutions in rectangular microchannels. Applied Physics Letters, 2014, 104, 124101.	3.3	20

#	Article	IF	CITATIONS
55	Symmetry-breaking Bifurcations in T-channel Flows: Effects of Fluid Viscoelasticity. Procedia Engineering, 2014, 79, 28-34.	1.2	6
56	Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheologica Acta, 2013, 52, 529-546.	2.4	113
57	Quantitative polarized light microscopy of unstained mammalian cochlear sections. Journal of Biomedical Optics, 2013, 18, 026021.	2.6	24
58	Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device. Biomicrofluidics, 2013, 7, 044108.	2.4	68
59	Instabilities in stagnation point flows of polymer solutions. Physics of Fluids, 2013, 25, .	4.0	38
60	Optimized Cross-Slot Flow Geometry for Microfluidic Extensional Rheometry. Physical Review Letters, 2012, 109, 128301.	7.8	116
61	Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter, 2012, 8, 536-555.	2.7	95
62	Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions. Biomacromolecules, 2012, 13, 1688-1699.	5.4	154
63	Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment. Physical Review E, 2012, 85, 031502.	2.1	64
64	Extensional opto-rheometry with biofluids and ultra-dilute polymer solutions. Soft Matter, 2011, 7, 9908.	2.7	51
65	In situ atomic force microscopy measurements of biotite basal plane reactivity in the presence of oxalic acid. Geochimica Et Cosmochimica Acta, 2011, 75, 6870-6881.	3.9	25
66	Extensional rheology of human saliva. Rheologica Acta, 2011, 50, 869-879.	2.4	85
67	Non-linear dynamics of semi-dilute polydisperse polymer solutions in microfluidics: effects of flow geometry. Rheologica Acta, 2011, 50, 277-290.	2.4	16
68	Force spectroscopy of an elastic peptide: Effect of D ₂ O and temperature on persistence length. Microscopy Research and Technique, 2011, 74, 170-176.	2.2	11
69	Non-linear dynamics of semi-dilute polydisperse polymer solutions in microfluidics: A study of a benchmark flow problem. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 951-963.	2.4	33
70	Extensional rheology of dilute polymer solutions in oscillatory cross-slot flow: the transient behaviour of birefringent strands. Rheologica Acta, 2010, 49, 633-645.	2.4	29
71	The rheology of polymer solution elastic strands in extensional flow. Rheologica Acta, 2010, 49, 781-788.	2.4	30
72	Buckling instabilities in dilute polymer solution elastic strands. Rheologica Acta, 2010, 49, 1219-1225.	2.4	10

#	Article	IF	CITATIONS
73	Direct realâ€time imaging of protein adsorption onto hydrophilic and hydrophobic surfaces. Biopolymers, 2010, 93, 74-84.	2.4	18
74	Flow of dilute to semi-dilute polystyrene solutions through a benchmark 8:1 planar abrupt micro-contraction. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1654-1669.	2.4	26
75	Viscosity enhancement in the flow of hydrolysed poly(acrylamide) saline solutions around spheres: implications for enhanced oil recovery. Rheologica Acta, 2008, 47, 129-137.	2.4	13
76	Quantitative Characterization of Complex Fluids in Microfluidics. AIP Conference Proceedings, 2008, , .	0.4	0
77	High-resolution imaging of biotite dissolution and measurement of activation energy. Mineralogical Magazine, 2008, 72, 115-120.	1.4	16
78	Ectomycorrhizal weathering, a matter of scale?. Mineralogical Magazine, 2008, 72, 131-134.	1.4	30
79	Viscosity enhancement in non-Newtonian flow of dilute aqueous polymer solutions through crystallographic and random porous media. Rheologica Acta, 2006, 45, 853-863.	2.4	16
80	Molecular orientation in non-Newtonian flow of dilute polymer solutions around spheres. Rheologica Acta, 2004, 43, 350.	2.4	22
81	Viscosity enhancement In non-Newtonian flow of dilute polymer solutions through crystallographic porous media. Rheologica Acta, 2003, 42, 516-526.	2.4	18
82	Chapter 9. Microfluidic Flows and Confinement of Wormlike Micelles., 0,, 236-278.		0