Takashi Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/329762/publications.pdf Version: 2024-02-01

Τλέλομι Ειικίισλ

#	Article	IF	CITATIONS
1	Origin of the inverse elastocaloric effect in a Ni-rich Ti-Ni shape memory alloy induced by oriented nanoprecipitates. Physical Review Materials, 2021, 5, .	0.9	2
2	Shape memory effect associated with successive FCC-FCT-BCT martensitic transformation in single-crystalline Fe-Pd alloy. Materialia, 2021, 16, 100685.	1.3	2
3	Incubation Time of Occurrence of Magnetic Field-Induced Martensitic Transformation in an Fe–24.8Ni–3.7Mn (at%) Alloy. Materials Transactions, 2021, 62, 1614-1618.	0.4	0
4	Three-dimensional EBSD Analysis and TEM Observation for Interface Microstructure during Reverse Phase Transformation in Low Carbon Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 247-256.	0.1	0
5	Superelasticity of micropillar of single crystalline Fe3Pt. Materialia, 2020, 9, 100534.	1.3	1
6	Martensitic transformation and elastocaloric effect of Ti–Ni–Cu–Al microwire. Materialia, 2020, 9, 100547.	1.3	10
7	Interpretation of Fe-rich part of Fe–Al phase diagram from magnetic properties of A2-, B2-, and DO3-phases. Journal of Alloys and Compounds, 2020, 834, 155140.	2.8	12
8	Kinetic Arrest of R-B19′ Transformation in Iron-Doped Ti–Ni Shape Memory Alloy. Materials Transactions, 2020, 61, 49-54.	0.4	3
9	Magnetic, Electrical, Thermal and Elastic Properties of High-Mn Electrical Steel. ISIJ International, 2020, 60, 597-601.	0.6	1
10	Pressure–Composition Phase Diagram of Fe–Ni Alloy. Materials Transactions, 2020, 61, 1058-1062.	0.4	4
11	lsothermal Martensitic Transformations in an Aged Ni-Rich Ti–Ni Alloy Containing Coherent Ti ₃ Ni ₄ Particles. Materials Transactions, 2020, 61, 37-41.	0.4	9
12	Change in Magnetic Susceptibility of Ti–Ni Shape Memory Alloys Associated with Martensitic Transformations. Materials Transactions, 2020, 61, 33-36.	0.4	1
13	A Perspective on Elastocaloric Effect in Ti–Ni-Based Shape Memory Alloys. Shape Memory and Superelasticity, 2019, 5, 230-234.	1.1	6
14	Neutron diffraction study on martensitic transformation under compressive stress in an ordered Fe3Pt. Journal of Applied Physics, 2019, 126, 025107.	1.1	1
15	Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti–Ni–Cu shape memory alloy. Acta Materialia, 2019, 177, 169-177.	3.8	50
16	Orientation dependence of damping behavior in a Mn-Cu shape memory alloy. Scripta Materialia, 2019, 170, 95-98.	2.6	23
17	Effect of Hydrogen Doping on Stress-Induced Martensitic Transformation in a Ti-Ni Shape Memory Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3033-3037.	1.1	7
18	Orientation dependence of elastocaloric effect in an aged Ni-rich Ti-Ni alloy. Scripta Materialia, 2019, 168, 86-90.	2.6	16

#	Article	IF	CITATIONS
19	Internal friction of the R-phase in single crystalline Ti-50.8Ni (at.%) alloy containing controlled precipitate of Ti3Ni4. Scripta Materialia, 2019, 166, 44-47.	2.6	14
20	Growth of B2 parent phase grain assisted by martensitic transformation in a nanocrystalline Ti-50.8Ni (at.%) shape memory alloy. Scripta Materialia, 2019, 159, 37-40.	2.6	4
21	Magnetic properties of disordered interacting electron system FeAl2-Ga (0 ≤ ≤0.5): Origin of local moment behaviour and the stabilization of an antiferromagnetic phase by weak interplanar magnetic interaction. Journal of Alloys and Compounds, 2019, 782, 915-926.	2.8	1
22	Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni-Ti-Fe shape memory alloys with 2 and 4†at% Fe content. Journal of Alloys and Compounds, 2019, 780, 930-936.	2.8	27
23	Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement. Scripta Materialia, 2019, 162, 230-234.	2.6	85
24	Stress-induced reverse martensitic transformation in a Ti-51Ni (at%) alloy aged under uniaxial stress. Scientific Reports, 2018, 8, 6099.	1.6	4
25	High damping capacity of single crystalline iron-palladium alloy exhibiting a weak first-order martensitic transformation. Journal of Alloys and Compounds, 2018, 740, 1007-1011.	2.8	4
26	Elastocaloric Effect Associated with Different Types of Martensitic Transformations: Typical Firstâ€Order and Weak Firstâ€Order Ones. Physica Status Solidi (B): Basic Research, 2018, 255, 1700246.	0.7	4
27	Magnetocrystalline anisotropy of cementite pseudo single crystal fabricated under a rotating magnetic field. Journal of Magnetism and Magnetic Materials, 2018, 451, 1-4.	1.0	16
28	<i>Ab Initio</i> Prediction of Atomic Location of Third Elements in B2-Type TiNi. Materials Transactions, 2018, 59, 353-358.	0.4	4
29	Reconstruction of the Three-dimensional Ferrite–austenite Microstructure and Crystallographic Analysis in the Early Stage of Reverse Phase Transformation in an Fe–Mn–C Alloy. ISIJ International, 2018, 58, 323-332.	0.6	11
30	Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy. Acta Materialia, 2018, 158, 330-339.	3.8	64
31	Size effect on the mechanical behavior of single crystalline Fe-31.2Pd (at.%) micropillars. Scripta Materialia, 2018, 152, 141-145.	2.6	7
32	Three-dimensional EBSD Analysis and TEM Observation for Interface Microstructure during Reverse Phase Transformation in Low Carbon Steels. ISIJ International, 2018, 58, 742-750.	0.6	10
33	Concomitant antiferromagnetic transition and disorder-induced weak localization in an interacting electron system. Physical Review B, 2017, 95, .	1.1	7
34	Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8Ni (at.%) alloy. Scripta Materialia, 2017, 134, 42-46.	2.6	46
35	Suppression of Martensitic Transformation in Co2Cr(Ga,Si) Heusler Alloys by Thermal Cycling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2105-2108.	1.1	3
36	Elastic-like deformation and elastocaloric effect of a partly ordered iron-platinum alloy exhibiting a weak first-order martensitic transformation, Journal Physics D: Applied Physics, 2017, 50, 404003	1.3	5

#	Article	IF	CITATIONS
37	Composition and structure dependence of specific heat of disordered iron-palladium alloys. Scripta Materialia, 2017, 139, 92-95.	2.6	4
38	Lattice Softening in Fe3Pt Exhibiting Three Types of Martensitic Transformations. Metals, 2017, 7, 156.	1.0	9
39	Mechanical Properties of the R-Phase and the Commensurate Phase under [111] Tensile Stress in Iron-Doped Titanium-Nickel Alloys. Materials Transactions, 2016, 57, 278-282.	0.4	4
40	<i>In Situ</i> EBSD Analysis on the Crystal Orientation Relationship between Ferrite and Austenite during Reverse Transformation of an Fe-Mn-C Alloy. Materials Transactions, 2016, 57, 1514-1519.	0.4	19
41	Easy axis of magnetization of Fe3C prepared by an electrolytic extraction method. Journal of Magnetism and Magnetic Materials, 2016, 417, 1-5.	1.0	8
42	Stable elastocaloric effect under tensile stress of iron-palladium alloy and its in situ X-ray observation. Acta Materialia, 2016, 118, 88-94.	3.8	21
43	Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4. Scripta Materialia, 2016, 124, 133-137.	2.6	40
44	Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150312.	1.6	2
45	Unique magnetostriction of Fe68.8Pd31.2 attributable to twinning. Scientific Reports, 2016, 6, 34259.	1.6	10
46	Time-temperature-transformation diagram for the martensitic transformation in a titanium-nickel shape memory alloy. Journal of Alloys and Compounds, 2016, 683, 481-484.	2.8	12
47	In situ transmission-electron-microscopy observation of solid-state amorphization behavior in Ti50Ni44Fe6 alloy by high-voltage electron microscopy. Acta Materialia, 2016, 104, 201-209.	3.8	3
48	Evolution of soft-phonon modes in Fe–Pd shape memory alloy under large elastic-like strains. Acta Materialia, 2016, 105, 182-188.	3.8	19
49	Selection of Cementite Variants Precipitated under Magnetic Field in Ferrite Matrix of an Fe–C Alloy. ISIJ International, 2016, 56, 1652-1655.	0.6	3
50	Solid State Amorphization Behavior in Ti ₅₀ Ni ₄₄ Fe ₆ Alloy Investigated by High Voltage Electron Microscopy (HVEM). Materia Japan, 2016, 55, 586-586.	0.1	0
51	Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy. Acta Materialia, 2015, 87, 8-14.	3.8	101
52	Critical point of martensitic transformation under stress in an Fe-31.2Pd (at.%) shape memory alloy. Philosophical Magazine, 2015, 95, 1390-1398.	0.7	32
53	Dynamic mechanical analysis of weak first-order martensitic transformation in an iron–palladium alloy. Journal of Alloys and Compounds, 2015, 649, 211-215.	2.8	8
54	Reply to comment on "lsothermal nature of the B2–B19′ martensitic transformation in a Ti–51.2Ni (a alloy― Scripta Materialia, 2015, 98, 71-73.	t.%) 2.6	1

#	Article	IF	CITATIONS
55	Temperature dependence of diffuse satellites in Ti–(50 â^' x)Pd– x Fe (14 ⩽ x ⩽ 20 (at.%)) alloys. Jou Alloys and Compounds, 2014, 615, 1047-1051.	rnal of 2.8	2
56	Effect of short range ordering on the magnetism in disordered Fe:Al alloy. Journal of Alloys and Compounds, 2014, 613, 306-311.	2.8	10
57	Neutron diffraction study on very high elastic strain of 6% in an Fe3Pt under compressive stress. Applied Physics Letters, 2014, 104, 231908.	1.5	10
58	The role of magnetic fields on the arrangement of ordered variants of L10-type Fe–55Pd (at.%) alloy. Acta Materialia, 2014, 66, 63-68.	3.8	2
59	An interpretation of the kinetics of martensitic transformation in a Ni45Co5Mn36.5In13.5 alloy. Acta Materialia, 2014, 81, 121-127.	3.8	24
60	Magnetocrystalline anisotropy and magnetic field-induced strain of three martensites in Fe3Pt ferromagnetic shape memory alloys. Acta Materialia, 2014, 62, 182-187.	3.8	15
61	Hysteretic and anhysteretic tensile stress–strain behavior of Ni–Fe(Co)–Ga single crystal: Experiment and theory. Acta Materialia, 2014, 66, 79-85.	3.8	36
62	Elastic Limit of Fe–Pd Alloys Exhibiting Lattice Softening. ISIJ International, 2014, 54, 1374-1378.	0.6	6
63	Orthorhombic martensite formed in L12-type Fe3Pt Invar alloy. Journal of Alloys and Compounds, 2013, 577, S503-S506.	2.8	5
64	Microstructure evolution to reach the single variant in an ordered Fe–55at.%Pd alloy. Journal of Alloys and Compounds, 2013, 577, S327-S332.	2.8	6
65	Advanced Materials Design by Microstructure Control Under Magnetic Field. , 2013, , 107-118.		0
66	Advanced Materials Design by Controlling Transformation Temperature Using Magnetic Field. , 2013, , 169-180.		0
67	Relation between negative temperature coefficient in electrical resistivity and athermal ï‰ phase in Ti–xNb (26a‰æa‰⊉9at.%) alloys. Journal of Alloys and Compounds, 2013, 577, S431-S434.	2.8	16
68	Effect of magnetic field on isothermal martensitic transformation in a sensitized SUS304 austenitic stainless steel. Journal of Alloys and Compounds, 2013, 577, S605-S608.	2.8	17
69	Promoting martensitic transformation in Fe–Ni nanoparticles prepared by a Sol–gel and Reduction method. Materials Letters, 2013, 109, 190-194.	1.3	5
70	On the physical nature of high reversible strain in Fe–Pd single crystals exhibiting lattice softening. Acta Materialia, 2013, 61, 4044-4052.	3.8	33
71	Direction of atom displacement in incommensurate state of Ti–32Pd–18Fe shape memory alloy. Materials Letters, 2013, 108, 293-296.	1.3	4
72	TTT diagram of martensitic transformation under magnetic field in a Ni45Co5Mn36.5In13.5 (at.%) alloy. Journal of Alloys and Compounds, 2013, 577, S380-S382.	2.8	4

#	Article	IF	CITATIONS
73	Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal. Applied Physics Letters, 2013, 102, .	1.5	114
74	Isothermal martensitic transformation of the R-phase in a Ti–44Ni–6Fe at.% alloy. Scripta Materialia, 2013, 69, 239-241.	2.6	15
75	Isothermal nature of the B2–B19′ martensitic transformation in a Ti–51.2Ni (at.%) alloy. Scripta Materialia, 2013, 68, 984-987.	2.6	29
76	More than 6% elastic strain realized in a bulk single crystal of an Fe3Pt alloy. Scripta Materialia, 2013, 69, 89-91.	2.6	21
77	Martensitic transformation in Pd doped FeRh exhibiting a metamagnetic transition. Journal of Alloys and Compounds, 2013, 563, 192-196.	2.8	10
78	TEM study of pseudo-twin in an off-stoichiometric Ni2MnGa. Journal of Alloys and Compounds, 2013, 577, S318-S322.	2.8	0
79	Superelasticity of Single Crystalline Fe-30.8 at.%Pd Alloy. Materials Science Forum, 2013, 738-739, 33-37.	0.3	3
80	Electron Microscopy Study of Preferential Variant Selection in CoPt Alloy Ordered under a Magnetic Field. Materials Transactions, 2013, 54, 1715-1718.	0.4	3
81	MeV Electron Irradiation Induced Solid-State Amorphization (SSA) in B2 Intermetallic Compounds. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 185-190.	0.1	2
82	Time dependent nature of first order magnetostructural transition in FeRh. Journal of Alloys and Compounds, 2012, 538, 5-7.	2.8	2
83	Effect of Magnetic Field on Successive ^ ^gamma;^ ^rarr;^ ^epsilon;^ ^prime;^ ^rarr;^ ^alpha;^ ^prime; Isothermal Martensitic Transformation in a SUS304L Stainless Steel. ISIJ International, 2012, 52, 1366-1369.	0.6	2
84	Martensitic transformation from incommensurate state with nano-scale domain structure in a Ti–42Ni–8Fe (at.%) alloy under a compressive stress. Philosophical Magazine Letters, 2011, 91, 29-34.	0.5	3
85	Effect of hydrostatic pressure on martensitic transformation in a ferromagnetic shape memory alloy Ni2MnGa. Journal of Alloys and Compounds, 2011, 509, 7840-7843.	2.8	9
86	A new type of FCT martensite phase in single-crystalline Fe3Pt Invar alloy. Journal of Alloys and Compounds, 2011, 509, 8530-8533.	2.8	8
87	Relation between incommensurate satellites and phonon softening in Ti–Ni-based shape memory alloys. Scripta Materialia, 2011, 64, 541-543.	2.6	11
88	lsothermal nature of martensitic transformation in an Ni45Co5Mn36.5In13.5 magnetic shape memory alloy. Scripta Materialia, 2011, 64, 927-930.	2.6	43
89	Kinetics of martensitic transformations in magnetic field or under hydrostatic pressure. Science and Technology of Advanced Materials, 2011, 12, 015004.	2.8	9
90	Kinetics of martensitic transformations in magnetic field or under hydrostatic pressure. Science and Technology of Advanced Materials, 2011, 12, 015004.	2.8	1

#	Article	IF	CITATIONS
91	An Interpretation of Martensitic Transformation in L1 ₂ -Type Fe ₃ Pt from Its Electronic Structure. Materials Transactions, 2010, 51, 896-898.	0.4	16
92	Premartensitic State of Ti-Pd-Fe Shape Memory Alloys Studied by Electrical Resistivity, Magnetic Susceptibility and Specific Heat Measurements. Materials Transactions, 2010, 51, 906-910.	0.4	9
93	Isothermal Martensitic Transformation in a Sensitized SUS304 Stainless Steel under Magnetic Field. Materials Science Forum, 2010, 654-656, 130-133.	0.3	3
94	Stress and temperature dependence of the structure of the martensite and X-phase in Ni ₂ MnGa. Philosophical Magazine, 2010, 90, 1925-1935.	0.7	6
95	Effects of magnetic field on martensitic transformations. Journal of Physics: Conference Series, 2009, 165, 012051.	0.3	2
96	Influence of a magnetic field on microstructure formation in L10-type ferromagnetic intermetallics. Journal of Physics: Conference Series, 2009, 165, 012055.	0.3	1
97	Equilibrium phase diagram of Ni2MnGa under [001] compressive stress. Scripta Materialia, 2009, 60, 96-99.	2.6	14
98	Influence of magnetocrystalline anisotropy on martensitic transformation under magnetic field of single-crystalline Ni2MnGa. Scripta Materialia, 2009, 60, 261-263.	2.6	16
99	Neutron diffraction study on stress-induced X-phase in Ni2MnGa. Scripta Materialia, 2009, 60, 248-250.	2.6	7
100	Crystal structure of the martensite phase in the ferromagnetic shape memory compound Ni2MnGa studied by electron diffraction. Scripta Materialia, 2009, 61, 473-476.	2.6	23
101	Structural analysis of Ti50Ni44Fe6 single crystal by X-ray fluorescence holography. Journal of Crystal Growth, 2009, 311, 982-985.	0.7	5
102	Giant strain associated with microstructure control by magnetic field in Fe–31.2Pd, CoO and Nd0.5Sr0.5MnO3. Journal of Magnetism and Magnetic Materials, 2009, 321, 769-772.	1.0	6
103	Phase transition in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ti</mml:mtext></mml:mrow> by x-ray fluorescence holography. Physical Review B, 2009, 80, .</mml:msub></mml:mrow></mml:math>	< mml:mn	> 530
104	Isothermal Martensitic Transformation in Sensitized SUS304 Austenitic Stainless Steel at Cryogenic Temperature. Materials Transactions, 2009, 50, 473-478.	0.4	10
105	Martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel during isothermal holding at low temperature. Journal of Physics: Conference Series, 2009, 165, 012058.	0.3	3
106	Ordering Process and Variant Selection under Magnetic Field in L10-type Co–50Pt and Fe–55Pd Alloys. ISIJ International, 2009, 49, 1610-1614.	0.6	5
107	Inelastic neutron scattering of a Ti–44 at.%Ni–6 at.%Fe alloy exhibiting an incommensurate–commensurate transition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 235-238.	2.6	13
108	Microstructure and transformation temperature in alloys with a large magnetocrystalline anisotropy under external fields. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 40-48.	2.6	4

#	Article	IF	CITATIONS
109	Electronic structure of B2-type Ti–(50â^'x)Ni–xFe and Ti–(50â^'x)Pd–xFe alloys exhibiting incommensurate diffuse scattering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 239-242.	2.6	5
110	Temperature dependence of rearrangement of martensite variants by magnetic field in 10M, 14M and 2M martensites of Ni–Mn–Ga alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 306-309.	2.6	34
111	Selected formation of a variant in L10-type CoPt realized by ordering heat treatment under a magnetic field. Scripta Materialia, 2008, 58, 811-814.	2.6	18
112	Acoustic emission in the fcc-fct martensitic transition of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mrow Physical Review B, 2008, 78, .</mml:mrow </mml:msub></mml:mrow></mml:math 	> <mml:mr< td=""><td>ı>38.8</td></mml:mr<>	ı> 3 8.8
113	Iron content and temperature dependences of diffuse scattering in Ti–(50– <i>x</i>)Ni– <i>x</i> Fe (6 â‰≇€‰ <i>x</i> â‰≇€‰10) alloys. Philosophical Magazine, 2008, 88, 1027-1035.	0.7	17
114	Differences between the R-phase and the commensurate phase in iron-doped Ti–Ni shape memory alloys. Philosophical Magazine, 2008, 88, 2449-2460.	0.7	15
115	Effect of Magnetic Field on Microstructure Evolution during Disorder-Order Transformation in an Fe-Pd Alloy. Materials Transactions, 2008, 49, 1970-1974.	0.4	9
116	Time-Temperature-Transformation Diagram of Successive γ→ε′→α′ Martensitic Transformation in SUS304L Stainless Steel. Materials Transactions, 2008, 49, 1937-1940.	0.4	6
117	Magnetic-Field-Induced Strain of Shape-Memory Alloy Fe3Pt Studied by a Capacitance Method in a Pulsed Magnetic Field. Japanese Journal of Applied Physics, 2007, 46, 146-151.	0.8	9
118	Magnetic-Field-Induced Strain of Fe-based Ferromagnetic Shape-Memory Alloy in a Pulsed Magnetic Field. Materials Research Society Symposia Proceedings, 2007, 1050, 1.	0.1	0
119	Effect of Magnetic Field on Martensitic Transformation Temperature in Ni ₂ MnGa with Single Variant and Multi-Variant States. Materials Science Forum, 2007, 539-543, 3243-3248.	0.3	0
120	Effect of Magnetic Field on Isothermal Martensitic Transformation in SUS304L Stainless Steel. Materials Science Forum, 2007, 561-565, 2333-2336.	0.3	1
121	Effect of Magnetic Field on γ-α Transformation in Fe-Rh Alloys. Materials Transactions, 2007, 48, 2821-2825.	0.4	11
122	Research and Development of 3d Multinary Functional Materials for Substitution of Rare and Toxic Elements. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 876-884.	0.2	1
123	Effects of Magnetic Field and Deformation on Isothermal Martensitic Transformation in SUS304 and SUS304L Steels. Materials Transactions, 2007, 48, 2833-2839.	0.4	10
124	Energy evaluation for twinning plane movement under magnetic field in ferromagnetic shape memory alloys. International Journal of Applied Electromagnetics and Mechanics, 2006, 23, 45-50.	0.3	7
125	Electronic Structure of B2-Type Ti–Ni–Fe Alloys Exhibiting Second-Order-Like Structural Transformation. Materials Transactions, 2006, 47, 594-598	0.4	10
126	Effect of magnetic field on martensitic transformation temperature in Ni–Mn–Ga ferromagnetic shape memory alloys. Acta Materialia, 2006, 54, 493-499.	3.8	69

#	Article	IF	CITATIONS
127	Phase boundary between uniaxial and planar ferromagnets in layered perovskite manganite La2â^'2xSr1+2xMn2O7 (0.313⩽x⩽0.350). Journal of Magnetism and Magnetic Materials, 2006, 303, 1	.38-140.	9
128	Stability of the B2-type structure and R-phase transformation behavior of Fe or Co doped Ti–Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 527-530.	2.6	12
129	Magnetic field-control of microstructure and function of materials exhibiting solid–solid phase transformation. Science and Technology of Advanced Materials, 2006, 7, 350-355.	2.8	17
130	A new phase induced in Ni2MnGa by uniaxial stress. Scripta Materialia, 2006, 54, 585-588.	2.6	24
131	Control of Microstructure Driven by Magnetic Field in Ferromagnetic Intermetallics. Materials Research Society Symposia Proceedings, 2006, 980, 2.	0.1	0
132	Effect of Magnetic Field on γ–α Transformation Temperature in Fe–Co Alloys. ISIJ International, 2006, 46, 1267-1270.	0.6	15
133	Uniaxial Magnetocrystalline Anisotropy Constant and Twinning Stress of Fe-31.2 mol%Pd Ferromagnetic Shape Memory Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 649-653.	0.2	3
134	Effect of Hydrostatic Pressure on P-14M-2M and P-2M Martensitic Transformations in Single Crystalline Ni–Mn–Ga Ferromagnetic Shape Memory Alloys. Materials Transactions, 2005, 46, 1928-1932.	0.4	22
135	Anomalies in resistivity, magnetic susceptibility and specific heat in iron-doped Ti–Ni shape memory alloys. Scripta Materialia, 2005, 53, 869-873.	2.6	62
136	Rearrangement of martensite variants under magnetic field applied along [001], [011] and [111] directions in Fe-31.2mol%Pd. International Journal of Applied Electromagnetics and Mechanics, 2005, 21, 163-169.	0.3	0
137	Anomalies in Physical Properties Related to the Stability of the B2-Phase in Ti-Ni-Co Shape Memory Alloys. Materials Science Forum, 2005, 475-479, 1977-1982.	0.3	2
138	Fundamental structure of a Ni2MnGa intermediate phase having an orthorhombic lattice. Smart Materials and Structures, 2005, 14, S197-S200.	1.8	16
139	Effect of Magnetic Field on Martensitic Transformation in Some Ferrous Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 363-375.	0.1	1
140	Field-Induced Strain of Shape Memory Alloy Fe–31.2%Pd Using a Capacitance Method in a Pulsed Magnetic Field. Japanese Journal of Applied Physics, 2004, 43, 7467-7471.	0.8	14
141	Rearrangement of Martensite Variants in Iron-Based Ferromagnetic Shape Memory Alloys under Magnetic Field. Materials Transactions, 2004, 45, 188-192.	0.4	50
142	Magnetization Process Associated with Rearrangement of Martensite Variants in Iron-Based Ferromagnetic Shape Memory Alloys. Materials Research Society Symposia Proceedings, 2003, 785, 1231.	0.1	2
143	Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. Journal of Applied Physics, 2003, 93, 8647-8649.	1.1	100
144	Conversion of Variants by Magnetic Field in Iron-Based Ferromagnetic Shape Memory Alloys. Materials Science Forum, 2003, 426-432, 2309-2314.	0.3	8

#	Article	IF	CITATIONS
145	Influence of Magnetic Field Direction on Rearrangement of Martensite Variants in an Fe-Pd Alloy. Materials Transactions, 2003, 44, 2495-2498.	0.4	12
146	Influence of Grain Boundary on Magnetoresistance in Hole Doped Manganites La _{0.7} Ca _{0.3} MnO ₃ , La _{0.7} Sr _{0.3} MnO ₃ and (La _{0.75} Y _{0.25}) _{0.7} Sr _{0.3} MnO ₃ . Materials Transactions 2003 44 2589-2593	0.4	1
147	Giant Magnetostriction in Fe ₃ Pt and FePd Ferromagnetic Shape-Memory Alloys. Materials Science Forum, 2002, 394-395, 531-536.	0.3	38
148	Martensitic Transformation in Shape Memory Alloys under Magnetic Field and Hydrostatic Pressure. Materials Transactions, 2002, 43, 887-892.	0.4	15
149	Two-Way Shape Memory Properties of a Ti-51Ni Single Crystal Including Ti ₃ Ni ₄ Precipitates of a Single Variant. Materials Transactions, 2001, 42, 323-328.	0.4	13
150	Copper Content Dependence of the Lattice Parameters of Ti(NiCu) ₂ . Materials Transactions, JIM, 2000, 41, 837-840.	0.9	16
151	Magnetic Field-Induced Martensitic Transformation and Giant Magnetostriction in Fe–Ni–Co–Ti and Ordered Fe ₃ Pt Shape Memory Alloys. Materials Transactions, JIM, 2000, 41, 882-887.	0.9	106
152	Hydrostatic Pressure Dependence of Transformation Temperatures of Ti-Ni-Cu Alloys. Materials Science Forum, 2000, 327-328, 115-118.	0.3	2
153	Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Applied Physics Letters, 2000, 77, 1502-1504.	1.5	215
154	Adsorption/Desorption of Lanthanides on Metal Oxides Interfaces. Radiochimica Acta, 1998, 82, 239-242.	0.5	11
155	Negative Temperature Coefficient of Electrical Resistivity in B2-Type Ti–Ni Alloys. Japanese Journal of Applied Physics, 1998, 37, 2535-2539.	0.8	35
156	Two-Way Shape Memory Properties of a Ni-Rich Ti–Ni Alloy Aged under Tensile-Stress. Materials Transactions, JIM, 1997, 38, 514-520.	0.9	33
157	Stress Induced R→B2 Transformation and Pseudoelasticity Associated with Twinning in a Ti–Ni Alloy Including Aligned Particles of Ti ₃ Ni ₄ . Materials Transactions, JIM, 1997, 38, 1057-1062.	0.9	9
158	Shape Memory Behavior of Ti–40.5Ni–10Cu Alloy Affected by C11 _b -Type Precipitates. Materials Transactions, JIM, 1997, 38, 107-111.	0.9	14
159	Effects of High Magnetic Field at Cryogenic Temperature on Martensitic Transformations in Austenitic Stainless Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 1326-1332.	0.2	2
160	Time-dependent nature of the athermal martensitic transformations in Feî—,Ni alloys. Scripta Materialia, 1996, 34, 147-150.	2.6	22
161	Martensitic Transformation Behavior of a Shape Memory Ti–40.5Ni–10Cu Alloy Affected by the C11 <i>_b</i> -type Precipitates. Materials Transactions, JIM, 1996, 37, 1540-1546.	0.9	31
162	Time-Dependent Nature of the Athermal Martensitic Transformation in a Cu–Al–Ni Shape Memory Alloy. Materials Transactions, JIM, 1996, 37, 299-303.	0.9	32

#	Article	IF	CITATIONS
163	Mechanism of B2-B19-B19′ Transformation in Shape Memory Ti–Ni–Cu Alloys. Materials Transactions, JIM, 1995, 36, 1244-1248.	0.9	43
164	Nucleation and Self-Accommodation of the R-Phase in Ti–Ni Alloys. Materials Transactions, JIM, 1992, 33, 271-277.	0.9	108
165	Structural Relation between the X-Phase and other Phases in Ni ₂ MnGa. Materials Science Forum, 0, 635, 49-54.	0.3	2
166	Stress-Temperature Phase Diagram of Ni ₂ MnGa and Structural Relations between its Constituent Phases. Materials Science Forum, 0, 684, 61-71.	0.3	0
167	An Interpretation on Kinetics of Martensitic Transformation. Solid State Phenomena, 0, 172-174, 90-98.	0.3	1
168	Instability of the Parent Phase in Nearly Ordered Fe ₃ Pt Invar Alloys. Solid State Phenomena, 0, 172-174, 79-83.	0.3	0
169	Position of Incommensurate Satellites Appearing in Ti-Ni Based Shape Memory Alloys. Solid State Phenomena, 0, 172-174, 150-154.	0.3	0
170	Stress-Temperature Phase Diagram of Ni2MnGa. , 0, , 95-97.		0
171	Neutron Diffraction Study of Stress-Induced New Phase in Ni ₂ MnGa. , 0, , 263-265.		0
172	Effects of Temperature and Magnetic Field on Stability of Austenitic Phase in SUS304L Stainless Steel. , 0, , 673-676.		0
173	Temperature Dependence of Electrical Resistivity and Diffuse Scattering in Ti-(50-x)Pd-xFe (14 ⩽x⩽ 22) Alloys. , 0, , 669-672.		0
174	Iron Content Dependence of R-Phase Transformation Behavior in Ti-(50-x)Ni-xFe Alloys. , 0, , 311-314.		0