Yougen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3297148/publications.pdf

Version: 2024-02-01

50	1,328	21	36
papers	citations	h-index	g-index
51	51	51	1226
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent progress in organocatalytic group transfer polymerization. Polymer Chemistry, 2013, 4, 4278.	3.9	100
2	Thermoresponsive Vesicular Morphologies Obtained by Self-Assemblies of Hybrid Oligosaccharide- <i>block</i> -poly(<i>N</i> -isopropylacrylamide) Copolymer Systems. Langmuir, 2010, 26, 2325-2332.	3 . 5	88
3	Synthesis of Linear, Cyclic, Figure-Eight-Shaped, and Tadpole-Shaped Amphiphilic Block Copolyethers via <i>t</i> -Bu-P ₄ -Catalyzed Ring-Opening Polymerization of Hydrophilic and Hydrophobic Glycidyl Ethers. Macromolecules, 2014, 47, 2853-2863.	4.8	75
4	Organic Superbase as an Efficient Catalyst for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2011, 44, 4641-4647.	4.8	73
5	Multilevel nonvolatile transistor memories using a star-shaped poly((4-diphenylamino)benzyl) Tj ETQq1 1 0.7843	814.rgBT /0	Overlock 10 T
6	Core-First Synthesis of Three-, Four-, and Six-Armed Star-Shaped Poly(methyl methacrylate)s by Group Transfer Polymerization Using Phosphazene Base. Macromolecules, 2011, 44, 9091-9098.	4.8	65
7	Synthesis of Linear and Star-Shaped Poly[4-(diphenylamino)benzyl methacrylate]s by Group Transfer Polymerization and Their Electrical Memory Device Applications. Macromolecules, 2011, 44, 5168-5177.	4.8	59
8	Synthesis, thermomorphic characteristics, and fluorescent properties of poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacrylamide)-block-poly(N-hydroxyethylacrylamide) rod-coil-coil triblock copolymers. Soft Matter, 2009, 5, 3761.	2.7	55
9	Donor–Acceptor Poly(3â€hexylthiophene)â€ <i>block</i> â€Pendent Poly(isoindigo) with Dual Roles of Charge Transporting and Storage Layer for Highâ€Performance Transistorâ€Type Memory Applications. Advanced Functional Materials, 2016, 26, 2695-2705.	14.9	49
10	Synthesis of Homopolymers, Diblock Copolymers, and Multiblock Polymers by Organocatalyzed Group Transfer Polymerization of Various Acrylate Monomers. Macromolecules, 2015, 48, 511-519.	4.8	40
11	High-performance stretchable resistive memories using donor–acceptor block copolymers with fluorene rods and pendent isoindigo coils. NPG Asia Materials, 2016, 8, e298-e298.	7.9	40
12	Controlled polymerization of methyl acrylate for highâ€molecularâ€weight polymers by pentafluorophenylbis(triflyl)methaneâ€promoted group transfer polymerization using triisopropylsilyl ketene acetal. Journal of Polymer Science Part A, 2012, 50, 3560-3566.	2.3	35
13	Synthesis of α-, ω-, and α,ω-End-Functionalized Poly($\langle i \rangle n \langle i \rangle$ -butyl acrylate)s by Organocatalytic Group Transfer Polymerization Using Functional Initiator and Terminator. Macromolecules, 2014, 47, 5514-5525.	4.8	35
14	Poly(<i>N</i> â€hydroxyethylacrylamide) Prepared by Atom Transfer Radical Polymerization as a Nonionic, Waterâ€Soluble, and Hydrolysisâ€Resistant Polymer and/or Segment of Block Copolymer with a Wellâ€Defined Molecular Weight. Macromolecular Chemistry and Physics, 2009, 210, 349-358.	2.2	34
15	Thermoresponsive properties of 3-, 4-, 6-, and 12-armed star-shaped poly[2-(dimethylamino)ethyl methacrylate]s prepared by core-first group transfer polymerization. Polymer Chemistry, 2014, 5, 4701-4709.	3.9	32
16	Synthesis of Oligosaccharide-Based Block Copolymers with Pendent π-Conjugated Oligofluorene Moieties and Their Electrical Device Applications. Macromolecules, 2015, 48, 3907-3917.	4.8	28
17	Effect of chain architecture on the phase transition of star and cyclic poly(N-isopropylacrylamide) in water. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2059-2068.	2.1	27
18	Synthesis and thermoresponsive properties of four-arm star-shaped poly(N-isopropylacrylamide)s bearing covalent and non-covalent cores. Polymer Chemistry, 2015, 6, 3608-3616.	3.9	26

#	Article	IF	CITATIONS
19	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of <i>n</i> -Butyl Acrylate with Hydrosilane through In Situ Formation of Initiator by 1,4-Hydrosilylation of <i>n</i> -Butyl Acrylate. ACS Macro Letters, 2014, 3, 1015-1019.	4.8	24
20	Synthesis and Thermoresponsive Property of Linear, Cyclic, and Star-Shaped Poly(<i>N</i> , <i>N</i> -diethylacrylamide)s Using B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization as Facile End-Functionalization Method. Macromolecules, 2016, 49, 4828-4838.	4.8	24
21	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of <i>N,N</i> -Disubstituted Acrylamide Using Hydrosilane: Effect of Hydrosilane and Monomer Structures, Polymerization Mechanism, and Synthesis of α-End-Functionalized Polyacrylamides. Macromolecules, 2016, 49, 3049-3060.	4.8	24
22	Synthesis of syndiotacticâ€rich starâ€shaped poly(methyl methacrylate) by coreâ€first group transfer polymerization using <i>N</i> â€(trimethylsilyl)bis(trifluoromethanesulfonyl)imide. Journal of Polymer Science Part A, 2012, 50, 3277-3285.	2.3	21
23	B(C ₆ F ₅) ₃ -catalyzed group transfer polymerization of alkyl methacrylates with dimethylphenylsilane through in situ formation of silyl ketene acetal by B(C ₆ F ₅) ₃ -catalyzed 1,4-hydrosilylation of methacrylate monomer. Polymer Chemistry. 2015. 6. 3502-3511.	3.9	21
24	Synthesis of miktoarm star copolymer Ru(II) complexes by click-to-chelate approach. Polymer Journal, 2013, 45, 216-225.	2.7	20
25	Synthesis of end-functionalized poly(methyl methacrylate) by organocatalyzed group transfer polymerization using functional silyl ketene acetals and α-phenylacrylates. Polymer Chemistry, 2015, 6, 1830-1837.	3.9	20
26	Isolation and functional characterization of exopolysaccharide produced by Lactobacillus plantarum S123 isolated from traditional Chinese cheese. Archives of Microbiology, 2021, 203, 3061-3070.	2.2	20
27	Effect of Counter Anions on Kinetics and Stereoregularity for the Strong BrÃ,nsted Acidâ€Promoted Group Transfer Polymerization of ⟨i⟩N⟨/i⟩,⟨i⟩N⟨/i⟩â€Dimethylacrylamide. Macromolecular Chemistry and Physics, 2012, 213, 1604-1611.	2.2	19
28	Organocatalyzed Group Transfer Polymerization. Chemical Record, 2016, 16, 2161-2183.	5.8	19
29	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of Acrylates Using Hydrosilane: Polymerization Mechanism, Applicable Monomers, and Synthesis of Well-Defined Acrylate Polymers. Macromolecules, 2019, 52, 844-856.	4.8	19
30	Organic acids as efficient catalysts for group transfer polymerization of N,N-disubstituted acrylamide with silyl ketene acetal: polymerization mechanism and synthesis of diblock copolymers. Polymer Chemistry, 2015, 6, 6845-6856.	3.9	18
31	Synthesis of multifunctional poly(1-pyrenemethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (methacr nanofibers for metal ion sensory applications. Polymer Chemistry, 2015, 6, 2327-2336.	ylate)-b-p 3.9	oly(N-isopro 17
32	Core-First Synthesis and Thermoresponsive Property of Three-, Four-, and Six-Arm Star-Shaped Poly(N,N-diethylacrylamide)s and Their Block Copolymers with Poly(N,N-dimethylacrylamide). Macromolecules, 2019, 52, 7207-7217.	4.8	17
33	Synthesis, morphology, and electrical memory application of oligosaccharide-based block copolymers with π-conjugated pyrene moieties and their supramolecules. Polymer Chemistry, 2016, 7, 1249-1263.	3.9	15
34	Synthesis of 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-armed star-shaped poly(styrene oxide) Ru(<scp>ii</scp>) complexes by a click-to-chelate approach. Polymer Chemistry, 2014, 5, 4993-5001.	3.9	12
35	Thermally deposited silk fibroin as the gate dielectric layer in organic thin-film transistors based on conjugated polymer. Reactive and Functional Polymers, 2018, 131, 368-377.	4.1	12
36	Synthesis of ABBâ \in 2 and ABC star copolymers via a combination of NMRP and ROP reactions. Polymer Chemistry, 2016, 7, 3599-3607.	3.9	11

#	Article	IF	CITATIONS
37	Synthesis of cyclic poly(2-ethyl-2-oxazoline) with a degradable disulfide bond. Polymer Chemistry, 2020, 11, 4164-4171.	3.9	11
38	Synthesis of AB block and A ₂ B ₂ and A ₃ B ₃ miktoarm star-shaped copolymers using I‰-end-functionalized poly(methyl methacrylate) with a hydroxyl group prepared by organocatalyzed group transfer polymerization. Polymer Chemistry, 2015, 6, 7841-7850.	3.9	9
39	Organocatalyzed Group Transfer Polymerization of Alkyl Sorbate: Polymer Synthesis, Postpolymerization Modification, and Thermal Properties. Macromolecules, 2021, 54, 9039-9052.	4.8	9
40	Thermoresponsive Properties of Poly[oligo(ethylene glycol) sorbate]s Prepared by Organocatalyzed Group Transfer Polymerization. Macromolecules, 2022, 55, 5149-5163.	4.8	7
41	Aggregation-induced fluorescent response of urea-bearing polyphenyleneethynylenes toward anion sensing. Science and Technology of Advanced Materials, 2021, 22, 597-606.	6.1	5
42	A facile end-functionalization of polystyrene by ATRP and click chemistry: Chain end effect on the glass transition temperature. Reactive and Functional Polymers, 2020, 151, 104566.	4.1	5
43	Synthesis of well-defined di- and triblock acrylic copolymers consisting of hard poly(dicyclopentanyl) Tj ETQq1 1 C and their glass transition behavior. Polymer Chemistry, 2021, 12, 3427-3440.	3.9	rgBT /Overlo 4
44	Recent Progress of Organocatalyzed Group Transfer Polymerization. Acta Chimica Sinica, 2020, 78, 733.	1.4	4
45	Unraveling the conformational properties of comb-like Poly(propargyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf	50,422 T	d (acrylate)-
46	Diphenyl phosphate/ethyl diphenylphosphinite as an efficient organocatalytic system for ring-opening polymerization of \hat{l}_{μ} -caprolactone and \hat{l} -valerolactone. Polymer Chemistry, 2022, 13, 545-557.	3.9	3
47	Synthesis, surface wettability, and thermal property of poly($\hat{l}\mu$ -caprolactone)-based polyurethane bearing triethylene glycol monomethyl as side chain. Reactive and Functional Polymers, 2020, 148, 104506.	4.1	2
48	Synthesis of Polyacrylateâ€Based Polyurethane by Organocatalyzed Group Transfer Polymerization and Polyaddition. Macromolecular Chemistry and Physics, 2020, 221, 2000217.	2,2	1
49	Synthesis of well-defined ABC2, AB2C3, (ABC2)4, and (ABC2)6 miktoarm star-branched polymers by combining organocatalyzed group transfer polymerization and ring-opening polymerization using multialdehydes as chain linkers. Polymer, 2021, 231, 124130.	3.8	1
50	Poly(β â€trimethylsilyloxy ester): A Degradable Polymer Based on Retro Mukaiyama Aldol Reaction. Macromolecular Rapid Communications, 2022, , 2100808.	3.9	0