Hong Gang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3297077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An artificial intelligence difficulty scoring system for stone removal during ERCP: a prospective validation. Endoscopy, 2023, 55, 4-11.	1.8	5
2	Endoscopists' diagnostic accuracy in detecting upper gastrointestinal neoplasia in the framework of artificial intelligence studies. Endoscopy, 2022, 54, 403-411.	1.8	17
3	Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos). Gastrointestinal Endoscopy, 2022, 95, 269-280.e6.	1.0	30
4	A deep learning-based system for real-time image reporting during esophagogastroduodenoscopy: a multicenter study. Endoscopy, 2022, 54, 771-777.	1.8	7
5	Gastrointestinal Symptoms Onset in COVID-19 Patients in Wuhan, China. Digestive Diseases and Sciences, 2021, 66, 3578-3587.	2.3	21
6	Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video). Gastrointestinal Endoscopy, 2021, 93, 422-432.e3.	1.0	14
7	A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy. Endoscopy, 2021, 53, 469-477.	1.8	56
8	Intelligent difficulty scoring and assistance system for endoscopic extraction of common bile duct stones based on deep learning: multicenter study. Endoscopy, 2021, 53, 491-498.	1.8	15
9	Artificial intelligence in upper GI endoscopy ―current status, challenges and future promise. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 20-24.	2.8	13
10	Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. Endoscopy, 2021, 53, 1199-1207.	1.8	84
11	A deep learning-based system for bile duct annotation and station recognition in linear endoscopic ultrasound. EBioMedicine, 2021, 65, 103238.	6.1	13
12	Expert-level classification of gastritis by endoscopy using deep learning: a multicenter diagnostic trial. Endoscopy International Open, 2021, 09, E955-E964.	1.8	5
13	Propionibacterium acnes overabundance in gastric cancer promote M2 polarization of macrophages via a TLR4/PI3K/Akt signaling. Gastric Cancer, 2021, 24, 1242-1253.	5.3	26
14	Multi-step validation of a deep learning-based system for the quantification of bowel preparation: a prospective, observational study. The Lancet Digital Health, 2021, 3, e697-e706.	12.3	17
15	Artificial intelligence in the diagnosis of gastric precancerous conditions by image-enhanced endoscopy: a multicenter, diagnostic study (with video). Gastrointestinal Endoscopy, 2021, 94, 540-548.e4.	1.0	44
16	Impact of Computer-Assisted System on the Learning Curve and Quality in Esophagogastroduodenoscopy: Randomized Controlled Trial. Frontiers in Medicine, 2021, 8, 781256.	2.6	3
17	Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial. Gastrointestinal Endoscopy, 2020, 91, 332-339.e3.	1.0	63
18	Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Scientific Reports, 2020, 10, 19196.	3.3	306

Hong Gang Yu

#	Article	IF	CITATIONS
19	Deep learning–based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video). Gastrointestinal Endoscopy, 2020, 92, 874-885.e3.	1.0	51
20	Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. The Lancet Gastroenterology and Hepatology, 2020, 5, 352-361.	8.1	251
21	A deep learning method for delineating early gastric cancer resection margin under chromoendoscopy and white light endoscopy. Gastric Cancer, 2020, 23, 884-892.	5.3	30
22	The role of non- bacteria in the development of gastric cancer. American Journal of Cancer Research, 2020, 10, 2271-2281.	1.4	3
23	A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy, 2019, 51, 522-531.	1.8	172
24	Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut, 2019, 68, 2161-2169.	12.1	221
25	Doxorubicin combined with Notch1â€ʿtargeting siRNA for the treatment of gastric cancer. Oncology Letters, 2018, 16, 2805-2812.	1.8	8
26	FHIT alterations in human esophageal, gastric and colorectal carcinomas. Chinese Journal of Digestive Diseases, 2002, 3, 120-123.	1.0	0