Alessandro Romeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/32968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simple method for Ge incorporation to enhance performance of low temperature and non-vacuum based CZTSSe solar cells. Solar Energy, 2022, 236, 599-607.	6.1	7
2	Near Infrared Circularly Polarized Luminescence From Water Stable Organic Nanoparticles Containing a Chiral Yb(III) Complex. Chemistry - A European Journal, 2022, 28, .	3.3	13
3	Cadmium telluride as a potential conversion surface. Journal of Applied Physics, 2021, 129, 045303.	2.5	3
4	CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies, 2021, 14, 1684.	3.1	100
5	Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles. Nanomaterials, 2021, 11, 766.	4.1	15
6	CdTe solar cells: technology, operation and reliability. Journal Physics D: Applied Physics, 2021, 54, 333002.	2.8	25
7	A new method for CdSexTe1-x band grading for high efficiency thin-absorber CdTe solar cells. Solar Energy Materials and Solar Cells, 2021, 226, 111081.	6.2	17
8	Analysis of the drying process for precursors of Cu2ZnSn(S,Se)4 layers by low cost non vacuum fabrication technique. Solar Energy, 2021, 224, 992-999.	6.1	3
9	Raman Spectroscopy and <i>In Situ</i> XRD Probing of the Thermal Decomposition of Sb ₂ Se ₃ Thin Films. Journal of Physical Chemistry C, 2021, 125, 19858-19865.	3.1	27
10	Effects of CdTe selenization on the electrical properties of the absorber for the fabrication of CdSexTe1-x/CdTe based solar cells. Solar Energy, 2021, 227, 8-12.	6.1	8
11	Conductivity of SbxSey films grown by CMBD from Sb and Se precursors for use in solar cells. Solar Energy, 2021, 230, 10-12.	6.1	2
12	Analysis of Se Co-evaporation and Post-selenization for Sb ₂ Se ₃ -Based Solar Cells. ACS Applied Energy Materials, 2021, 4, 12479-12486.	5.1	13
13	How the amount of copper influences the formation and stability of defects in CdTe solar cells. Solar Energy Materials and Solar Cells, 2020, 204, 110228.	6.2	28
14	Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 2020, 110, 100619.	32.8	270
15	Influence of CdTe solar cell properties on stability at high temperatures. Microelectronics Reliability, 2020, 114, 113847.	1.7	6
16	Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. International Journal of Biological Macromolecules, 2020, 154, 206-216.	7.5	12
17	Semisynthetic and Enzymeâ€Mediated Conjugate Preparations Illuminate the Ubiquitinationâ€Dependent Aggregation of Tau Protein. Angewandte Chemie, 2020, 132, 6669-6673.	2.0	2
18	Semisynthetic and Enzymeâ€Mediated Conjugate Preparations Illuminate the Ubiquitinationâ€Dependent Aggregation of Tau Protein. Angewandte Chemie - International Edition, 2020, 59, 6607-6611.	13.8	24

Alessandro Romeo

#	Article	IF	CITATIONS
19	Ozone at low concentrations does not affect motility and proliferation of cancer cells in vitro. European Journal of Histochemistry, 2020, 64, .	1.5	6
20	CdTe and CuInGaSe2 Thin-Film Solar Cells. Springer Series in Materials Science, 2020, , 197-217.	0.6	0
21	Growth and characterization of ZnxSn1â^'xSe films for use in thin film solar cells. Solar Energy, 2019, 193, 519-522.	6.1	4
22	Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation. Solar Energy, 2019, 193, 452-457.	6.1	22
23	Complexes of rare earth ions embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles: Characterization and spectroscopic study. Optical Materials, 2019, 94, 249-256.	3.6	8
24	Analysis of a novel CuCl ₂ back contact process for improved stability in CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 706-715.	8.1	40
25	Encapsulation of Photosystem I in Organic Microparticles Increases Its Photochemical Activity and Stability for Ex Vivo Photocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 10435-10444.	6.7	12
26	Reliability investigation on CdTe solar cells submitted to short-term thermal stress. Microelectronics Reliability, 2019, 100-101, 113490.	1.7	1
27	Difluorochloromethane treated thin CdS buffer layers for improved CdTe solar cells. Thin Solid Films, 2019, 672, 7-13.	1.8	4
28	Analysis of magnesium zinc oxide layers for high efficiency CdTe devices. Thin Solid Films, 2019, 672, 22-25.	1.8	19
29	Grain Segmentation in Atomic Force Microscopy for Thin-Film Deposition Quality Control. Lecture Notes in Computer Science, 2019, , 385-394.	1.3	0
30	Low substrate temperature CdTe solar cells: A review. Solar Energy, 2018, 175, 9-15.	6.1	37
31	Ketamine nano-delivery based on poly-lactic-co-glycolic acid (PLGA) nanoparticles. Applied Nanoscience (Switzerland), 2018, 8, 655-663.	3.1	5
32	CdTe Solar Cells. , 2018, , 309-369.		4
33	Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells. Solar Energy, 2018, 159, 834-840.	6.1	38
34	Improved stability of CdTe solar cells by absorber surface etching. Solar Energy Materials and Solar Cells, 2017, 162, 127-133.	6.2	39
35	Deep study of MgCl2 as activator in CdS/CdTe solar cells. Solar Energy, 2017, 155, 620-626.	6.1	11
36	Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. Journal of Biomedical Materials Research - Part A, 2017, 105, 847-858.	4.0	24

#	Article	IF	CITATIONS
37	Study of MgCl 2 activation treatment on the defects of CdTe solar cells by capacitance-voltage, drive level capacitance profiling and admittance spectroscopy techniques. Thin Solid Films, 2017, 633, 97-100.	1.8	24
38	Analysis of the influence on the performance degradation of CdTe solar cells by the front contact. Thin Solid Films, 2017, 633, 101-105.	1.8	14
39	SnS by Ionized Jet Deposition for photovoltaic applications. , 2017, , .		2
40	Magnesium-doped Zinc Oxide as a High Resistance Transparent Layer for thin film CdS/CdTe solar cells. , 2017, , .		7
41	SnS Thin Film Solar Cells: Perspectives and Limitations. Coatings, 2017, 7, 34.	2.6	50
42	Comparison of MgCl2and CdCl2 Activation Treatment for CDTE Solar Cells: Recrystallization and Defects. , 2017, , .		1
43	CdTe thin film solar cells by pulsed electron deposition. , 2016, , .		1
44	A study of SnS recrystallization by post deposition treatment. , 2016, , .		4
45	Comparison of high efficiency flexible CdTe solar cells on different substrates at low temperature deposition. Solar Energy, 2016, 139, 13-18.	6.1	39
46	CdCl 2 activation treatment: A comprehensive study by monitoring the annealing temperature. Thin Solid Films, 2015, 582, 110-114.	1.8	13
47	Preface of E-MRS 2014 symposium A. Thin Solid Films, 2015, 582, 1.	1.8	Ο
48	Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact. Thin Solid Films, 2015, 582, 105-109.	1.8	12
49	Last Progress in CdTe/CdS Thin Film Solar Cell Fabrication Process. Energy Procedia, 2014, 57, 65-72.	1.8	19
50	The inclusion into PLGA nanoparticles enables α-bisabolol to efficiently inhibit the human dendritic cell pro-inflammatory activity. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	8
51	Study of difluorochloromethane activation treatment on low substrate temperature deposited CdTe solar cells. Solar Energy Materials and Solar Cells, 2013, 112, 190-195.	6.2	27
52	Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells. Thin Solid Films, 2013, 535, 257-260.	1.8	51
53	High efficiency Cu(In,Ga)Se2/CdS thin film solar cells obtained with precursors sputtered from InSe, GaSe and Cu targets. Thin Solid Films, 2013, 535, 88-91.	1.8	16
54	Effects of activation treatment on the electrical properties of low temperature grown CdTe devices. Thin Solid Films, 2013, 535, 253-256.	1.8	21

#	Article	IF	CITATIONS
55	Etching effect of CdTe absorber on the stability of thin film solar cell devices. , 2013, , .		4
56	Electrical characterization and aging of CdTe thin film solar cells with Bi <inf>2</inf> Te <inf>3</inf> back contact. , 2013, , .		6
57	The secondâ€generation of CdTe and CuInGaSe ₂ thin film PV modules. Crystal Research and Technology, 2011, 46, 857-864.	1.3	25
58	CdTe Thin Film Solar Cells: Present Status and Future Perspectives. , 2011, , .		0
59	An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Solar Energy Materials and Solar Cells, 2010, 94, 2-7.	6.2	118
60	CIGS thin films prepared by sputtering and selenization by using In <inf>2</inf> Se <inf>3</inf> , Ga <inf>2</inf> Se <inf>3</inf> and Cu as sputtering targets. , 2010, , .		4
61	A CdTe Thin Film Module Factory with a Novel Process. Materials Research Society Symposia Proceedings, 2009, 1165, 1.	0.1	1
62	IBIC analysis of CdTe/CdS solar cells. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2181-2184.	1.4	19
63	Study of CSS- and HVE-CdTe by different recrystallization processes. Thin Solid Films, 2009, 517, 2132-2135.	1.8	32
64	Application of high mobility transparent conductors to enhance long wavelength transparency of the intermediate solar cell in multi-junction solar cells. Thin Solid Films, 2009, 517, 2340-2343.	1.8	31
65	Singlet and Triplet State Transitions of Carotenoids in the Antenna Complexes of Higher-Plant Photosystem lâ€. Biochemistry, 2007, 46, 3846-3855.	2.5	41
66	Bifacial configurations for CdTe solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1388-1391.	6.2	48
67	Recent developments in evaporated CdTe solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 664-677.	6.2	99
68	High-efficiency flexible CdTe solar cells on polymer substrates. Solar Energy Materials and Solar Cells, 2006, 90, 3407-3415.	6.2	79
69	Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells. Thin Solid Films, 2005, 480-481, 118-123.	1.8	111
70	Stability aspects in CdTe/CdS solar cells. Thin Solid Films, 2004, 451-452, 536-543.	1.8	94
71	Analysis of Bulk and Interface Phenomena in CdTe/CdS Thin-Film Solar Cells. Journal of Materials Science, 2004, 12, 259-266.	1.2	47
72	CdTe solar cell in a novel configuration. Progress in Photovoltaics: Research and Applications, 2004, 12, 33-38.	8.1	83

Alessandro Romeo

#	Article	IF	CITATIONS
73	Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12, 93-111.	8.1	336
74	CdTe/CdS solar cells on flexible substrates. Solar Energy, 2004, 77, 831-838.	6.1	175
75	Study of spatially resolved impurity diffusion in CdTe solar cells using voltage dependent quantum efficiency. Thin Solid Films, 2003, 431-432, 421-425.	1.8	7
76	Structural and chemical interface characterization of CdTe solar cells by transmission electron microscopy. Thin Solid Films, 2003, 431-432, 262-266.	1.8	76
77	Influence of proton irradiation and development of flexible CdTe solar cells on polyimide. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	11
78	Voltage Dependent Carrier Collection in CdTe Solar Cells. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	19
79	Development of efficient and stable back contacts on CdTe/CdS solar cells. Thin Solid Films, 2001, 387, 151-154.	1.8	143
80	Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells. Solar Energy Materials and Solar Cells, 2001, 67, 311-321.	6.2	89
81	Flexible CdTe solar cells on polymer films. Progress in Photovoltaics: Research and Applications, 2001, 9, 211-215.	8.1	75
82	Recrystallization in CdTe/CdS. Thin Solid Films, 2000, 361-362, 420-425.	1.8	85
83	A study of the back contacts on CdTe/CdS solar cells. Thin Solid Films, 2000, 361-362, 463-467.	1.8	71
84	A highly efficient and stable CdTe/CdS thin film solar cell. Solar Energy Materials and Solar Cells, 1999, 58, 209-218.	6.2	172
85	High energy irradiation properties of CdTe/CdS solar cells. , 0, , .		2