Tuukka Petäjä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3296684/publications.pdf Version: 2024-02-01

		4383	5118
493	38,963	86	166
papers	citations	h-index	g-index
831	831	831	13191
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 318.	0.8	56
2	Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 432.	0.8	401
3	The SALTENA Experiment: Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes. Bulletin of the American Meteorological Society, 2022, 103, E212-E229.	1.7	9
4	The impact of ammonium on the distillation of organic carbon in PM2.5. Science of the Total Environment, 2022, 803, 150012.	3.9	2
5	Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters. Journal of Aerosol Science, 2022, 159, 105878.	1.8	9
6	The standard operating procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter. Journal of Aerosol Science, 2022, 159, 105896.	1.8	11
7	Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health, 2022, 23, 100241.	2.0	37
8	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & amp; Technology, 2022, 56, 770-778.	4.6	16
9	Electric charge of atmospheric nanoparticles and its potential implications with human health. Science of the Total Environment, 2022, 808, 152106.	3.9	6
10	Evolution of organic carbon during COVID-19 lockdown period: Possible contribution of nocturnal chemistry. Science of the Total Environment, 2022, 808, 152191.	3.9	21
11	Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. Environmental Science Atmospheres, 2022, 2, 146-164.	0.9	6
12	New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics, 2022, 22, 1293-1309.	1.9	11
13	Effects of oligomerization and decomposition on the nanoparticle growth: a model study. Atmospheric Chemistry and Physics, 2022, 22, 155-171.	1.9	4
14	Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry. Atmospheric Environment, 2022, 273, 118971.	1.9	3
15	Retrieval of Multiple Atmospheric Environmental Parameters From Images With Deep Learning. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	2
16	Overview of the MOSAiC expedition: Atmosphere. Elementa, 2022, 10, .	1.1	121
17	Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets. Atmospheric Chemistry and Physics, 2022, 22, 1861-1882.	1.9	3
18	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27

#	Article	IF	CITATIONS
19	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	0.9	8
20	The contribution of new particle formation and subsequent growth to haze formation. Environmental Science Atmospheres, 2022, 2, 352-361.	0.9	17
21	Correlation between the Concentrations of Atmospheric Ions and Radon as Judged from Measurements at the Fonovaya Observatory. Atmospheric and Oceanic Optics, 2022, 35, 36-42.	0.6	1
22	Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2237-2254.	1.9	6
23	Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface. Environmental Research Letters, 2022, 17, 034032.	2.2	9
24	Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols. Nature Geoscience, 2022, 15, 196-202.	5.4	31
25	Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities. Nature Geoscience, 2022, 15, 255-261.	5.4	64
26	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	1.9	9
27	Arctic observations and sustainable development goals – Contributions and examples from ERA-PLANET iCUPE data. Environmental Science and Policy, 2022, 132, 323-336.	2.4	6
28	Influence of biogenic emissions from boreal forests on aerosol–cloud interactions. Nature Geoscience, 2022, 15, 42-47.	5.4	25
29	Aerosol optical properties calculated from size distributions, filter samples and absorption photometer data at Dome C, Antarctica, and their relationships with seasonal cycles of sources. Atmospheric Chemistry and Physics, 2022, 22, 5033-5069.	1.9	3
30	Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyyti孫滿地oreal forest. Atmospheric Chemistry and Physics, 2022, 22, 5117-5145.	1.9	4
31	Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science and Technology Letters, 2022, 9, 375-382.	3.9	6
32	Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC. Atmospheric Chemistry and Physics, 2022, 22, 4801-4808.	1.9	8
33	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	2.6	8
34	Non-linear models for black carbon exposure modelling using air pollution datasets. Environmental Research, 2022, 212, 113269.	3.7	6
35	Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products. Atmospheric Chemistry and Physics, 2022, 22, 5477-5494.	1.9	6
36	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	13.7	26

#	Article	IF	CITATIONS
37	Institute for Atmospheric and Earth System Research (INAR): Showcases for making science diplomacy. Polar Record, 2022, 58, .	0.4	1
38	Insufficient Condensable Organic Vapors Lead to Slow Growth of New Particles in an Urban Environment. Environmental Science & Technology, 2022, 56, 9936-9946.	4.6	19
39	Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra. Atmospheric Chemistry and Physics, 2022, 22, 8097-8115.	1.9	8
40	Influence of emission size distribution and nucleation on number concentrations over Greater Paris. Atmospheric Chemistry and Physics, 2022, 22, 8579-8596.	1.9	6
41	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	1.9	5
42	Improving the current air quality index with new particulate indicators using a robust statistical approach. Science of the Total Environment, 2022, 844, 157099.	3.9	9
43	The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents. National Science Review, 2021, 8, nwaa157.	4.6	16
44	Research agenda for the Russian Far East and utilization of multi-platform comprehensive environmental observations. International Journal of Digital Earth, 2021, 14, 311-337.	1.6	11
45	Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration. Journal of Aerosol Science, 2021, 152, 105694.	1.8	21
46	Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 2021, 14, 4-9.	5.4	40
47	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
48	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.	1.6	74
49	Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland. Atmospheric Chemistry and Physics, 2021, 21, 1173-1189.	1.9	33
50	Fire and vegetation dynamics in northwest Siberia during the last 60Âyears based on high-resolution remote sensing. Biogeosciences, 2021, 18, 207-228.	1.3	16
51	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	23
52	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
53	Global Air Quality and COVID-19 Pandemic: Do We Breathe Cleaner Air?. Aerosol and Air Quality Research, 2021, 21, 200567.	0.9	20
54	Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest. Atmospheric Chemistry and Physics, 2021, 21, 695-715.	1.9	14

#	Article	IF	CITATIONS
55	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
56	The effect of urban morphological characteristics on the spatial variation of PM _{2.5} air quality in downtown Nanjing. Environmental Science Atmospheres, 2021, 1, 481-497.	0.9	6
57	Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. Science of the Total Environment, 2021, 753, 142207.	3.9	21
58	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
59	Data Assimilation of AOD and Estimation of Surface Particulate Matters over the Arctic. Applied Sciences (Switzerland), 2021, 11, 1959.	1.3	3
60	Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth. Atmospheric Chemistry and Physics, 2021, 21, 2861-2880.	1.9	6
61	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	1.5	70
62	The effect of meteorological conditions and atmospheric composition in the occurrence and development of new particle formation (NPF) events in Europe. Atmospheric Chemistry and Physics, 2021, 21, 3345-3370.	1.9	21
63	Intelligent and Scalable Air Quality Monitoring With 5G Edge. IEEE Internet Computing, 2021, 25, 35-44.	3.2	17
64	Late-spring and summertime tropospheric ozone and NO ₂ in western Siberia and the Russian Arctic: regional model evaluation and sensitivities. Atmospheric Chemistry and Physics, 2021, 21, 4677-4697.	1.9	11
65	The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests. Atmospheric Chemistry and Physics, 2021, 21, 3899-3918.	1.9	31
66	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
67	Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0. Geoscientific Model Development, 2021, 14, 1821-1839.	1.3	1
68	Aerosol particle formation in the upper residual layer. Atmospheric Chemistry and Physics, 2021, 21, 7901-7915.	1.9	21
69	Opinion: Gigacity– a source of problems or the new way to sustainable development. Atmospheric Chemistry and Physics, 2021, 21, 8313-8322.	1.9	15
70	Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 2021, 768, 145282.	3.9	26
71	Determination of free amino acids, saccharides, and selected microbes in biogenic atmospheric aerosols – seasonal variations, particle size distribution, chemical and microbial relations. Atmospheric Chemistry and Physics, 2021, 21, 8775-8790.	1.9	10
72	Cluster Analysis of Submicron Particle Number Size Distributions at the SORPES Station in the Yangtze River Delta of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034004.	1.2	13

#	Article	IF	CITATIONS
73	Towards understanding the characteristics of new particle formation in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2021, 21, 9223-9251.	1.9	19
74	Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia. EcoHealth, 2021, 18, 217-228.	0.9	21
75	Atmospheric and ecosystem big data providing key contributions in reaching United Nations' Sustainable Development Goals. Big Earth Data, 2021, 5, 277-305.	2.0	6
76	Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison. Atmospheric Chemistry and Physics, 2021, 21, 9931-9953.	1.9	13
77	Eight years of sub-micrometre organic aerosol composition data from the boreal forest characterized using a machine-learning approach. Atmospheric Chemistry and Physics, 2021, 21, 10081-10109.	1.9	14
78	Added Value of Vaisala AQT530 Sensors as a Part of a Sensor Network for Comprehensive Air Quality Monitoring. Frontiers in Environmental Science, 2021, 9, .	1.5	6
79	Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21, 11437-11452.	1.9	12
80	Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air. Atmospheric Chemistry and Physics, 2021, 21, 10439-10455.	1.9	6
81	An enhanced integrated approach to knowledgeable high-resolution environmental quality assessment. Environmental Science and Policy, 2021, 122, 1-13.	2.4	12
82	Assessing volatile organic compound sources in a boreal forest using positive matrix factorization (PMF). Atmospheric Environment, 2021, 259, 118503.	1.9	13
83	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 12649-12663.	1.9	9
84	A phenomenology of new particle formation (NPF) at 13 European sites. Atmospheric Chemistry and Physics, 2021, 21, 11905-11925.	1.9	13
85	Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction. Atmospheric Chemistry and Physics, 2021, 21, 12173-12187.	1.9	10
86	Data imputation in in situ-measured particle size distributions by means of neural networks. Atmospheric Measurement Techniques, 2021, 14, 5535-5554.	1.2	5
87	High-performance and sustainable aerosol filters based on hierarchical and crosslinked nanofoams of cellulose nanofibers. Journal of Cleaner Production, 2021, 310, 127498.	4.6	26
88	Transit pollution exposure monitoring using low-cost wearable sensors. Transportation Research, Part D: Transport and Environment, 2021, 98, 102981.	3.2	15
89	Trends of Planetary Boundary Layer Height Over Urban Cities of China From 1980–2018. Frontiers in Environmental Science, 2021, 9,	1.5	7
90	Ammonium nitrate promotes sulfate formation through uptake kinetic regime. Atmospheric Chemistry and Physics, 2021, 21, 13269-13286.	1.9	24

#	Article	IF	CITATIONS
91	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
92	Impact of pyruvic acid photolysis on acetaldehyde and peroxy radical formation in the boreal forest: theoretical calculations and model results. Atmospheric Chemistry and Physics, 2021, 21, 14333-14349.	1.9	1
93	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.	4.8	126
94	Significance of the organic aerosol driven climate feedback in the boreal area. Nature Communications, 2021, 12, 5637.	5.8	38
95	Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site. Atmospheric Measurement Techniques, 2021, 14, 6419-6441.	1.2	8
96	Two-year statistics of columnar-ice production in stratiform clouds over HyytiÃѬ҈¤Finland: environmental conditions and the relevance to secondary ice production. Atmospheric Chemistry and Physics, 2021, 21, 14671-14686.	1.9	7
97	Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nature Communications, 2021, 12, 6416.	5.8	53
98	Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Chemistry and Physics, 2021, 21, 17185-17223.	1.9	31
99	Wintertime subarctic new particle formation from Kola Peninsula sulfur emissions. Atmospheric Chemistry and Physics, 2021, 21, 17559-17576.	1.9	9
100	City Wide Participatory Sensing of Air Quality. Frontiers in Environmental Science, 2021, 9, .	1.5	5
101	Sustaining Arctic Observing Networks' (SAON) Roadmap for Arctic Observing and Data Systems (ROADS). Arctic, 2021, 74, 56-68.	0.2	8
102	First eddy covariance flux measurements of semi-volatile organic compounds with the PTR3-TOF-MS. Atmospheric Measurement Techniques, 2021, 14, 8019-8039.	1.2	6
103	Measurement report: New particle formation characteristics at an urban and a mountain station in northern China. Atmospheric Chemistry and Physics, 2021, 21, 17885-17906.	1.9	7
104	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	1.9	36
105	Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin. Atmospheric Chemistry and Physics, 2020, 20, 8181-8200.	1.9	24
106	Comparing plastic foils for dew collection: Preparatory laboratory-scale method and field experiment in Kenya. Biosystems Engineering, 2020, 196, 145-158.	1.9	7
107	Unprecedented Ambient Sulfur Trioxide (SO ₃) Detection: Possible Formation Mechanism and Atmospheric Implications. Environmental Science and Technology Letters, 2020, 7, 809-818.	3.9	34
108	Intelligent Calibration and Virtual Sensing for Integrated Low-Cost Air Quality Sensors. IEEE Sensors Journal, 2020, 20, 13638-13652.	2.4	63

#	Article	IF	CITATIONS
109	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	2.0	54
110	Low-cost Air Quality Sensing Process: Validation by Indoor-Outdoor Measurements. , 2020, , .		11
111	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
112	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
113	Overview of measurements and current instrumentation for 1–10Ânm aerosol particle number size distributions. Journal of Aerosol Science, 2020, 148, 105584.	1.8	58
114	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Technology, 2020, 54, 7911-7921.	4.6	66
115	Monitoring of ticks and tick-borne pathogens through a nationwide research station network in Finland. Ticks and Tick-borne Diseases, 2020, 11, 101449.	1.1	29
116	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	4.6	284
117	Condensation/immersion mode ice-nucleating particles in a boreal environment. Atmospheric Chemistry and Physics, 2020, 20, 6687-6706.	1.9	9
118	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58
119	Variation of size-segregated particle number concentrations in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 1201-1216.	1.9	52
120	Toward Massive Scale Air Quality Monitoring. IEEE Communications Magazine, 2020, 58, 54-59.	4.9	65
121	Characterization of Urban New Particle Formation in Amman—Jordan. Atmosphere, 2020, 11, 79.	1.0	14
122	Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nature Protocols, 2020, 15, 1013-1040.	5.5	49
123	Input-Adaptive Proxy for Black Carbon as a Virtual Sensor. Sensors, 2020, 20, 182.	2.1	16
124	Long-term trends in PM2.5 mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates. Environmental Pollution, 2020, 263, 114500.	3.7	38
125	Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability. Atmospheric Chemistry and Physics, 2020, 20, 3151-3180.	1.9	26
126	Sources and formation of nucleation mode particles in remote tropical marine atmospheres over the South China Sea and the Northwest Pacific Ocean. Science of the Total Environment, 2020, 735, 139302.	3.9	9

#	Article	IF	CITATIONS
127	Particulate Matter Concentrations in a Middle Eastern City – An Insight to Sand and Dust Storm Episodes. Aerosol and Air Quality Research, 2020, 20, 2780-2792.	0.9	8
128	Size-resolved particle number emissions in Beijing determined from measured particle size distributions. Atmospheric Chemistry and Physics, 2020, 20, 11329-11348.	1.9	28
129	Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations. Atmospheric Chemistry and Physics, 2020, 20, 11747-11766.	1.9	42
130	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
131	Roll vortices induce new particle formation bursts in the planetary boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 11841-11854.	1.9	9
132	Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chemistry and Physics, 2020, 20, 12721-12740.	1.9	36
133	The promotion effect of nitrous acid on aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions. Atmospheric Chemistry and Physics, 2020, 20, 13023-13040.	1.9	37
134	New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 14253-14271.	1.9	22
135	Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results. Atmospheric Chemistry and Physics, 2020, 20, 8551-8592.	1.9	26
136	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
137	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	1.2	65
138	Clouds over HyytiÃÞAPFinland: an algorithm to classify clouds based on solar radiation and cloud base height measurements. Atmospheric Measurement Techniques, 2020, 13, 5595-5619.	1.2	6
139	Relating high ozone, ultrafine particles, and new particle formation episodes using cluster analysis. Atmospheric Environment: X, 2019, 4, 100051.	0.8	9
140	Over a 10-year record of aerosol optical properties at SMEAR II. Atmospheric Chemistry and Physics, 2019, 19, 11363-11382.	1.9	20
141	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology, 2019, 53, 12506-12518.	4.6	45
142	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	5.8	91
143	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.	4.6	32
144	Molecular identification of organic vapors driving atmospheric nanoparticle growth. Nature Communications, 2019, 10, 4442.	5.8	89

Тиикка РетА́**¤**́А́¤

#	Article	IF	CITATIONS
145	Comparison of surface foil materials and dew collectors location in an arid area: a one-year field experiment in Kenya. Agricultural and Forest Meteorology, 2019, 276-277, 107613.	1.9	13
146	Formation and growth of atmospheric nanoparticles in the eastern Mediterranean: results from long-term measurements and process simulations. Atmospheric Chemistry and Physics, 2019, 19, 2671-2686.	1.9	30
147	Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site. Atmospheric Chemistry and Physics, 2019, 19, 3645-3672.	1.9	13
148	Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other?. Environment International, 2019, 129, 118-135.	4.8	110
149	Vertical profiles of sub-3 nm particles over the boreal forest. Atmospheric Chemistry and Physics, 2019, 19, 4127-4138.	1.9	20
150	Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 5973-5991.	1.9	40
151	Increased inorganic aerosol fraction contributes to air pollution and haze in China. Atmospheric Chemistry and Physics, 2019, 19, 5881-5888.	1.9	37
152	Evidence of New Particle Formation Within Etna and Stromboli Volcanic Plumes and Its Parameterization From Airborne In Situ Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5650-5668.	1.2	18
153	Atmospheric new particle formation in China. Atmospheric Chemistry and Physics, 2019, 19, 115-138.	1.9	118
154	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	1.2	52
155	Ion Mobility-Mass Spectrometry of Iodine Pentoxide–Iodic Acid Hybrid Cluster Anions in Dry and Humidified Atmospheres. Journal of Physical Chemistry Letters, 2019, 10, 1935-1941.	2.1	26
156	A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing. Atmospheric Chemistry and Physics, 2019, 19, 1971-1983.	1.9	46
157	Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmospheric Chemistry and Physics, 2019, 19, 1941-1970.	1.9	24
158	Urban Aerosol Particle Size Characterization in Eastern Mediterranean Conditions. Atmosphere, 2019, 10, 710.	1.0	12
159	Estimating cloud condensation nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization. Atmospheric Chemistry and Physics, 2019, 19, 15483-15502.	1.9	10
160	Long-term total OH reactivity measurements in a boreal forest. Atmospheric Chemistry and Physics, 2019, 19, 14431-14453.	1.9	16
161	Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	36
162	The Silk Road agenda of the Pan-Eurasian Experiment (PEEX) program. Big Earth Data, 2018, 2, 8-35.	2.0	6

#	Article	IF	CITATIONS
163	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	1.9	108
164	Observations of ozone depletion events in a Finnish boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 49-63.	1.9	9
165	Long-term observations of the background aerosol at Cabauw, The Netherlands. Science of the Total Environment, 2018, 625, 752-761.	3.9	6
166	On the time response determination of condensation particle counters. Aerosol Science and Technology, 2018, 52, 778-787.	1.5	13
167	The initial stages of multicomponent particle formation during the gas phase combustion synthesis of mixed SiO2/TiO2. Aerosol Science and Technology, 2018, 52, 277-286.	1.5	7
168	Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9, 157.	5.8	86
169	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	1.9	21
170	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	1.9	56
171	Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar5218.	4.7	64
172	Combining airborne in situ and ground-based lidar measurements for attribution of aerosol layers. Atmospheric Chemistry and Physics, 2018, 18, 10575-10591.	1.9	7
173	Refined classification and characterization of atmospheric new-particle formation events using air ions. Atmospheric Chemistry and Physics, 2018, 18, 17883-17893.	1.9	35
174	AÂEuropean aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28ÂACTRIS sites. Atmospheric Chemistry and Physics, 2018, 18, 7877-7911.	1.9	76
175	Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods. Atmospheric Chemistry and Physics, 2018, 18, 17705-17716.	1.9	17
176	Vertical and horizontal distribution of regional new particle formation events in Madrid. Atmospheric Chemistry and Physics, 2018, 18, 16601-16618.	1.9	30
177	Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests. Atmospheric Chemistry and Physics, 2018, 18, 17863-17881.	1.9	50
178	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	1.9	34
179	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
180	Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica. Science Advances, 2018, 4, eaat9744.	4.7	79

#	Article	IF	CITATIONS
181	Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 13839-13863.	1.9	79
182	Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates. Aerosol Science and Technology, 2018, 52, 1332-1343.	1.5	17
183	Insights into HO _{<i>x</i>} and RO _{<i>x</i>} chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide. Atmospheric Chemistry and Physics. 2018. 18. 13457-13479.	1.9	28
184	Atmospheric new particle formation and growth: review of field observations. Environmental Research Letters, 2018, 13, 103003.	2.2	308
185	Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory. Atmospheric Chemistry and Physics, 2018, 18, 13321-13328.	1.9	Ο
186	The role of H ₂ SO ₄ -NH <sub&a anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 13231-13243.</sub&a 	amp;gt;3& 1.9	amp;lt;/sub&a
187	Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China. Atmospheric Chemistry and Physics, 2018, 18, 11779-11791.	1.9	29
188	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	1.9	113
189	Mixing state and particle hygroscopicity of organic-dominated aerosols over the Pearl River Delta region in China. Atmospheric Chemistry and Physics, 2018, 18, 14079-14094.	1.9	30
190	Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 10255-10274.	1.9	26
191	Ground-based observation of clusters and nucleation-mode particles in the Amazon. Atmospheric Chemistry and Physics, 2018, 18, 13245-13264.	1.9	26
192	Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 11547-11562.	1.9	39
193	Aerosol optical properties at SORPES in Nanjing, east China. Atmospheric Chemistry and Physics, 2018, 18, 5265-5292.	1.9	33
194	Laboratory verification of a new high flow differential mobility particle sizer, and field measurements in HyytiÃÞApJournal of Aerosol Science, 2018, 124, 1-9.	1.8	20
195	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361, 278-281.	6.0	415
196	Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier. Atmospheric Measurement Techniques, 2018, 11, 4477-4491.	1.2	20
197	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
198	PAN-EURASIAN EXPERIMENT (PEEX) PROGRAM: AN OVERVIEW OF THE FIRST 5 YEARS IN OPERATION AND FUTURE PROSPECTS. Geography, Environment, Sustainability, 2018, 11, 6-19.	0.6	11

#	Article	IF	CITATIONS
199	Accumulation and Coarse Modes Particle Concentrations during Dew Formation and Precipitation. Aerosol and Air Quality Research, 2018, 18, 2929-2938.	0.9	7
200	Cryosphere: a kingdom of anomalies and diversity. Atmospheric Chemistry and Physics, 2018, 18, 6535-6542.	1.9	5
201	The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors. Combustion and Flame, 2017, 176, 72-80.	2.8	31
202	Particulate matter pollution over China and the effects of control policies. Science of the Total Environment, 2017, 584-585, 426-447.	3.9	252
203	Atmospheric gas-to-particle conversion: why NPF events are observed in megacities?. Faraday Discussions, 2017, 200, 271-288.	1.6	120
204	First measurements of the number size distribution of 1–2Ânm aerosol particles released from manufacturing processes in a cleanroom environment. Aerosol Science and Technology, 2017, 51, 685-693.	1.5	12
205	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	1.6	29
206	Production of neutral molecular clusters by controlled neutralization of mobility standards. Aerosol Science and Technology, 2017, 51, 946-955.	1.5	5
207	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	1.5	74
208	Cluster formation mechanisms of titanium dioxide during combustion synthesis: Observation with an APi-TOF. Aerosol Science and Technology, 2017, 51, 1071-1081.	1.5	14
209	Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth. Geophysical Research Letters, 2017, 44, 2958-2966.	1.5	71
210	Chemical investigation and quality of urban dew collections with dust precipitates. Environmental Science and Pollution Research, 2017, 24, 12312-12318.	2.7	11
211	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	2.4	44
212	Laboratory verification of Aerosol Diffusion Spectrometer and the application to ambient measurements of new particle formation. Journal of Aerosol Science, 2017, 105, 10-23.	1.8	21
213	VH-TDMA: A description and verification of an instrument to measure aerosol particle hygroscopicity and volatility. Aerosol Science and Technology, 2017, 51, 97-107.	1.5	8
214	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	1.7	128
215	Observation of incipient particle formation during flame synthesis by tandem differential mobility analysis-mass spectrometry (DMA-MS). Proceedings of the Combustion Institute, 2017, 36, 745-752.	2.4	20
216	Features in air ions measured by an air ion spectrometer (AIS) at DomeÂC. Atmospheric Chemistry and Physics, 2017, 17, 13783-13800.	1.9	12

#	Article	IF	CITATIONS
217	The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.	1.9	66
218	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50
219	Measurements of sub-3†nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities. Atmospheric Chemistry and Physics, 2017, 17, 2163-2187.	1.9	71
220	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	1.9	14
221	Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2017, 17, 3659-3672.	1.9	7
222	Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument. Atmospheric Chemistry and Physics, 2017, 17, 7807-7826.	1.9	82
223	Estimation of atmospheric particle formation rates through an analytical formula: validation and application in HyytiĂläand Puijo, Finland. Atmospheric Chemistry and Physics, 2017, 17, 13361-13371.	1.9	1
224	Annual cycle of Scots pine photosynthesis. Atmospheric Chemistry and Physics, 2017, 17, 15045-15053.	1.9	5
225	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	1.9	23
226	Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmospheric Chemistry and Physics, 2017, 17, 5623-5641.	1.9	45
227	Long-term analysis of clear-sky new particle formation events and nonevents in HyytiĀĦ¤Atmospheric Chemistry and Physics, 2017, 17, 6227-6241.	1.9	84
228	Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.	1.9	11
229	Characterization of three new condensation particle counters for sub-3â€ [–] nm particle detection during the Helsinki CPC workshop: the ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010. Atmospheric Measurement Techniques, 2017, 10, 2271-2281.	1.2	14
230	Using in situ GC-MS for analysis of C ₂ –C ₇ volatile organicÂacidsÂinÂambientÂairÂofÂaÂborealÂforestÂsite. Atmospheric Measurement Techniques, 2017, 10, 281-	1.2 289.	15
231	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
232	Mobile Aerosol Measurement in the Eastern Mediterranean - A Utilization of Portable Instruments. Aerosol and Air Quality Research, 2017, 17, 1875-1886.	0.9	19
233	How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2016, 9, 3577-3605.	1.2	43
234	Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland. Atmospheric Measurement Techniques, 2016, 9, 3193-3203.	1.2	6

#	Article	IF	CITATIONS
235	Modelling the dispersion of particle numbers in five European cities. Geoscientific Model Development, 2016, 9, 451-478.	1.3	50
236	A generalised background correction algorithm for a Halo Doppler lidar and its application to data from Finland. Atmospheric Measurement Techniques, 2016, 9, 817-827.	1.2	37
237	A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3â€nm ions at ambient concentrations. Atmospheric Measurement Techniques, 2016, 9, 2709-2720.	1.2	14
238	Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system. Atmospheric Measurement Techniques, 2016, 9, 2977-2988.	1.2	35
239	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	1.7	71
240	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	1.2	99
241	High-Molecular Weight Dimer Esters Are Major Products in Aerosols from α-Pinene Ozonolysis and the Boreal Forest. Environmental Science and Technology Letters, 2016, 3, 280-285.	3.9	127
242	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	1.2	17
243	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	1.2	71
244	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	1.6	80
245	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	13.7	540
246	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	13.7	528
247	New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, 352, 1109-1112.	6.0	348
248	Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 2016, 43, 2873-2879.	1.5	590
249	Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments. Environmental Science and Technology Letters, 2016, 3, 42-46.	3.9	12
250	Characterization of a Herrmann-type high-resolution differential mobility analyzer. Aerosol Science and Technology, 2016, 50, 222-229.	1.5	32
251	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	3.3	107
252	Long-term observation of air pollution-weather/climate interactions at the SORPES station: a review and outlook. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	75

Тиикка РетА́я́А́¤

#	Article	IF	CITATIONS
253	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	13.7	237
254	Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 2016, 539, 416-419.	13.7	112
255	Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 2016, 50, 1017-1032.	1.5	13
256	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	5.8	116
257	Enhanced air pollution via aerosol-boundary layer feedback in China. Scientific Reports, 2016, 6, 18998.	1.6	285
258	Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16, 1017-1028.	1.9	35
259	Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD. Atmospheric Chemistry and Physics, 2016, 16, 13601-13618.	1.9	24
260	Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmospheric Chemistry and Physics, 2016, 16, 12715-12731.	1.9	118
261	Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site. Atmospheric Chemistry and Physics, 2016, 16, 13291-13307.	1.9	29
262	How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?. Atmospheric Chemistry and Physics, 2016, 16, 14297-14315.	1.9	14
263	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	1.9	57
264	High concentrations of sub-3nm clusters and frequent new particle formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign. Atmospheric Chemistry and Physics, 2016, 16, 1919-1935.	1.9	25
265	Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 2016, 16, 2477-2492.	1.9	47
266	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 2016, 16, 293-304.	1.9	29
267	Observation of viscosity transition in <i>α</i> -pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	1.9	55
268	Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland. Atmospheric Chemistry and Physics, 2016, 16, 7981-8007.	1.9	34
269	The versatile size analyzing nuclei counter (vSANC). Aerosol Science and Technology, 2016, 50, 947-958.	1.5	7
270	On secondary new particle formation in China. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	43

Тиикка РетА́я́А́¤

#	Article	IF	CITATIONS
271	Aerosols physical properties at Hada Al Sham, western Saudi Arabia. Atmospheric Environment, 2016, 135, 109-117.	1.9	20
272	Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts. Atmospheric Environment, 2016, 130, 36-53.	1.9	46
273	Heterogeneous Nucleation onto Ions and Neutralized Ions: Insights into Sign-Preference. Journal of Physical Chemistry C, 2016, 120, 7444-7450.	1.5	45
274	Modelling the Dispersion of Particle Numbers in Five European Cities. Springer Proceedings in Complexity, 2016, , 415-418.	0.2	1
275	GROUND-BASED STATION NETWORK IN ARCTIC AND SUBARCTIC EURASIA: AN OVERVIEW. Geography, Environment, Sustainability, 2016, 9, 75-88.	0.6	9
276	Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts. Plant, Cell and Environment, 2015, 38, 2299-2312.	2.8	33
277	Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12679-12694.	1.2	122
278	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	1.5	43
279	SMEAR Estonia: Perspectives of a large-scale forest ecosystem – atmosphere research infrastructure. Forestry Studies, 2015, 63, 56-84.	0.1	22
280	Introduction: The Pan-Eurasian Experiment (PEEX) – multidisciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry and Physics, 2015, 15, 13085-13096.	1.9	49
281	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	1.9	46
282	A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland. Atmospheric Chemistry and Physics, 2015, 15, 799-813.	1.9	52
283	Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 9203-9215.	1.9	52
284	Adsorptive uptake of water by semisolid secondary organic aerosols. Geophysical Research Letters, 2015, 42, 3063-3068.	1.5	139
285	In situ formation and spatial variability of particle number concentration in a European megacity. Atmospheric Chemistry and Physics, 2015, 15, 10219-10237.	1.9	28
286	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <sub and ternary (H₂SO₄–H<sub< td=""><td>>2 1.9 >2</td><td>2%amp;lt;/sub 27 2%amp;lt;/sub</td></sub<></sub 	>2 1.9 >2	2%amp;lt;/sub 27 2%amp;lt;/sub
287	system. Atmospheric Chemistry and Physics, 2015, 15, 10701-10721. Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15, 1147-1159.	1.9	96
288	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009	1.9	18

#	Article	IF	CITATIONS
289	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmospheric Chemistry and Physics, 2015, 15, 12211-12229.	1.9	58
290	Technical note: New particle formation event forecasts during PEGASOS–Zeppelin Northern mission 2013 in HyytiĀǼ¤Finland. Atmospheric Chemistry and Physics, 2015, 15, 12385-12396.	1.9	27
291	Variability of air ion concentrations in urban Paris. Atmospheric Chemistry and Physics, 2015, 15, 13717-13737.	1.9	19
292	Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmospheric Chemistry and Physics, 2015, 15, 12445-12464.	1.9	112
293	Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate. Atmospheric Chemistry and Physics, 2015, 15, 14071-14089.	1.9	74
294	Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study. Atmospheric Chemistry and Physics, 2015, 15, 7247-7267.	1.9	32
295	Technical Note: Using DEG-CPCs at upper tropospheric temperatures. Atmospheric Chemistry and Physics, 2015, 15, 7547-7555.	1.9	11
296	Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland. Atmospheric Measurement Techniques, 2015, 8, 4453-4473.	1.2	19
297	Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest. Atmospheric Measurement Techniques, 2015, 8, 4001-4011.	1.2	30
298	Estimates of global dew collection potential on artificial surfaces. Hydrology and Earth System Sciences, 2015, 19, 601-613.	1.9	40
299	On the interpretation of the loading correction of the aethalometer. Atmospheric Measurement Techniques, 2015, 8, 4415-4427.	1.2	52
300	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	1.9	84
301	Sub-3Ânm Particle Detection with Commercial TSI 3772 and Airmodus A20 Fine Condensation Particle Counters. Aerosol Science and Technology, 2015, 49, 674-681.	1.5	29
302	Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene. Journal of Physical Chemistry A, 2015, 119, 4633-4650.	1.1	101
303	Sulphuric acid and aerosol particle production in the vicinity of an oil refinery. Atmospheric Environment, 2015, 119, 156-166.	1.9	29
304	Sizing of neutral sub 3nm tungsten oxide clusters using Airmodus Particle Size Magnifier. Journal of Aerosol Science, 2015, 87, 53-62.	1.8	37
305	Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmospheric Measurement Techniques, 2014, 7, 689-700.	1.2	73
306	Differences in aerosol absorption Ãngström exponents between correction algorithms for a particle soot absorption photometer measured on the South African Highveld. Atmospheric Measurement Techniques, 2014, 7, 4285-4298.	1.2	17

#	Article	IF	CITATIONS
307	Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN. Atmospheric Measurement Techniques, 2014, 7, 3849-3859.	1.2	7
308	Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology, 2014, 95, 703-714.	1.5	50
309	Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network. Atmospheric Measurement Techniques, 2014, 7, 1351-1375.	1.2	64
310	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	4.6	51
311	Connecting ground-based in-situ observations, ground-based remote sensing and satellite data within the Pan Eurasian Experiment (PEEX) program. Proceedings of SPIE, 2014, , .	0.8	2
312	Changes in concentration of nitrogen-containing compounds in 10nm particles of boreal forest atmosphere at snowmelt. Journal of Aerosol Science, 2014, 70, 1-10.	1.8	5
313	Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation. Annual Review of Physical Chemistry, 2014, 65, 21-37.	4.8	242
314	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	6.0	456
315	High-Resolution Mobility and Mass Spectrometry of Negative Ions Produced in a ²⁴¹ Am Aerosol Charger. Aerosol Science and Technology, 2014, 48, 261-270.	1.5	37
316	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	3.3	208
317	The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene. Journal of the American Chemical Society, 2014, 136, 15596-15606.	6.6	236
318	Carbon clusters in 50nm urban air aerosol particles quantified by laser desorption–ionization aerosol mass spectrometer. International Journal of Mass Spectrometry, 2014, 358, 17-24.	0.7	14
319	Do small spores disperse further than large spores?. Ecology, 2014, 95, 1612-1621.	1.5	87
320	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	13.7	1,448
321	Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4, 6634.	1.6	121
322	Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties. Atmospheric Chemistry and Physics, 2014, 14, 4473-4502.	1.9	17
323	Reactivity of stabilized Criegee intermediates (sCls) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	1.9	94
324	Aerosols and nucleation in eastern China: first insights from the new SORPES-NJU station. Atmospheric Chemistry and Physics, 2014, 14, 2169-2183.	1.9	72

Тиикка РетА́**¤**́А́¤

#	Article	IF	CITATIONS
325	Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010. Atmospheric Chemistry and Physics, 2014, 14, 4733-4748.	1.9	54
326	Observation and modelling of HO _x radicals in a boreal forest. Atmospheric Chemistry and Physics, 2014, 14, 8723-8747.	1.9	109
327	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2014, 14, 9061-9076.	1.9	68
328	Trends in new particle formation in eastern Lapland, Finland: effect of decreasing sulfur emissions from Kola Peninsula. Atmospheric Chemistry and Physics, 2014, 14, 4383-4396.	1.9	36
329	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	1.9	308
330	Enhancement of atmospheric H ₂ SO ₄ / H ₂ O nucleation: organic oxidation products versus amines. Atmospheric Chemistry and Physics, 2014, 14, 751-764.	1.9	48
331	Particle nucleation in a forested environment. Atmospheric Pollution Research, 2014, 5, 805-810.	1.8	2
332	PAN EURASIAN EXPERIMENT (PEEX) - A RESEARCH INITIATIVE MEETING THE GRAND CHALLENGES OF THE CHANGING ENVIRONMENT OF THE NORTHERN PAN-EURASIAN ARCTIC-BOREAL AREAS. Geography, Environment, Sustainability, 2014, 7, 13-48.	0.6	19
333	Applicability of an integrated plume rise model for the dispersion from wild-land fires. Geoscientific Model Development, 2014, 7, 2663-2681.	1.3	18
334	Spatial–temporal variations of particle number concentrations between a busy street and the urban background. Atmospheric Environment, 2013, 79, 324-333.	1.9	23
335	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	13.7	774
336	Liquid chromatography–dopantâ€assisted atmospheric pressure photoionization–mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles. Journal of Separation Science, 2013, 36, 164-172.	1.3	5
337	Modeling regional deposited dose of submicron aerosol particles. Science of the Total Environment, 2013, 458-460, 140-149.	3.9	61
338	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	6.0	876
339	How to Utilise the Knowledge of Causal Responses?. , 2013, , 397-469.		0
340	Counting Efficiency of a TSI Environmental Particle Counter Monitor Model 3783. Aerosol Science and Technology, 2013, 47, 482-487.	1.5	7
341	Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 2013, 6, 438-442.	5.4	282
342	Species traits and inertial deposition of fungal spores. Journal of Aerosol Science, 2013, 61, 81-98.	1.8	42

#	Article	IF	CITATIONS
343	Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmospheric Environment, 2013, 77, 415-429.	1.9	88
344	Hygroscopicity of sub-6 nm sodium chloride particles. AIP Conference Proceedings, 2013, , .	0.3	1
345	Atmospheric electricity and aerosol-cloud interactions in earth's atmosphere. , 2013, , .		0
346	On atmospheric neutral and ion clusters observed in Hyytial`lal` spring 2011. , 2013, , .		0
347	Measuring composition and growth of ion clusters of sulfuric acid, ammonia, amines and oxidized organics as first steps of nucleation in the CLOUD experiment. , 2013, , .		0
348	Identification and quantification of particle growth channels during new particle formation. , 2013, , .		0
349	Climatic implications of the Brazilian biofuel transition. , 2013, , .		0
350	On the benefits of comprehensive long-term observations of atmospheric nanoparticles, clusters and ions. , 2013, , .		0
351	Probing aerosol formation by comprehensive measurements of gas phase oxidation products. , 2013, , .		0
352	The particle size magnifier closing the gap between measurement of molecules, molecular clusters and aerosol particles. , 2013, , .		0
353	lon generation and CPC detection efficiency studies in sub 3-nm size range. , 2013, , .		0
354	Laboratory characterization of a size-resolved CPC battery to infer the composition of freshly formed atmospheric nuclei. , 2013, , .		0
355	Characterization of diethylene glycol-condensation particle counters for detection of sub-3 nm particles. , 2013, , .		2
356	Measurements of cluster ions using a nano radial DMA and a particle size magnifier in CLOUD. , 2013, , .		0
357	Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013, , .		1
358	Evolution of $\hat{I}\pm$ -pinene oxidation products in the presence of varying oxidizers: Negative APi-TOF point of view. , 2013, , .		0
359	Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: The impact of Kola air pollution to new particle formation. , 2013, , .		0
360	Effect of salt formation on condensation of organic compounds on atmospheric nanoparticles. , 2013,		0

Тиикка РетА́́я́а́¤

#	Article	IF	CITATIONS
361	Does the onset of new particle formation occur in the planetary boundary layer?. , 2013, , .		1
362	Observations of biomass burning smoke from Russian wild fire episodes in Finland 2010. , 2013, , .		0
363	Sulphur dioxide and sulphuric acid concentrations in the vicinity of Kilpilahti industrial area. , 2013, , .		Ο
364	Long-term size-segregated cloud condensation nuclei counter (CCNc) measurements in a boreal environment and the implications for aerosol-cloud interactions. , 2013, , .		1
365	Performance of diethylene glycol-based particle counters in the sub-3 nm size range. Atmospheric Measurement Techniques, 2013, 6, 1793-1804.	1.2	63
366	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	1.2	44
367	Response to Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon". Science, 2013, 339, 393-393.	6.0	35
368	Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range. Aerosol Science and Technology, 2013, 47, 556-563.	1.5	70
369	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	3.3	300
370	Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmospheric Chemistry and Physics, 2013, 13, 10545-10554.	1.9	286
371	Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmospheric Chemistry and Physics, 2013, 13, 11987-12001.	1.9	85
372	Oxidation of SO ₂ by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations. Atmospheric Chemistry and Physics, 2013, 13, 3865-3879.	1.9	131
373	Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013, 13, 5813-5830.	1.9	352
374	Identification and quantification of particle growth channels during new particle formation. Atmospheric Chemistry and Physics, 2013, 13, 10215-10225.	1.9	20
375	The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation. Atmospheric Chemistry and Physics, 2013, 13, 10285-10301.	1.9	69
376	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	1.9	28
377	Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 7473-7487.	1.9	46
378	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÃѬ҈¤Finland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	1.9	53

#	Article	IF	CITATIONS
379	Model for acid-base chemistry in nanoparticle growth (MABNAG). Atmospheric Chemistry and Physics, 2013, 13, 12507-12524.	1.9	53
380	Black carbon concentration and deposition estimations in Finland by the regional aerosol–climate model REMO-HAM. Atmospheric Chemistry and Physics, 2013, 13, 4033-4055.	1.9	24
381	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	1.9	33
382	Terpenoid emissions from fully grown east Siberian <i>Larix cajanderi</i> trees. Biogeosciences, 2013, 10, 4705-4719.	1.3	11
383	Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification. Aerosol and Air Quality Research, 2013, 13, 421-435.	0.9	33
384	The contribution of organics to atmospheric nanoparticle growth. Nature Geoscience, 2012, 5, 453-458.	5.4	350
385	Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model. Atmospheric Chemistry and Physics, 2012, 12, 4843-4854.	1.9	52
386	First measurements of reactive α-dicarbonyl concentrations on PM _{2.5} aerosol over the Boreal forest in Finland during HUMPPA-COPEC 2010 – source apportionment and links to aerosol aging. Atmospheric Chemistry and Physics, 2012, 12, 6145-6155	1.9	12
387	On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation. Atmospheric Chemistry and Physics, 2012, 12, 9113-9133.	1.9	119
388	Long-term volatility measurements of submicron atmospheric aerosol in HyytiÃÞAPFinland. Atmospheric Chemistry and Physics, 2012, 12, 10771-10786.	1.9	45
389	On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil. Atmospheric Chemistry and Physics, 2012, 12, 11733-11751.	1.9	55
390	Estimation of aerosol particle number distribution with Kalman Filtering – Part 2: Simultaneous use of DMPS, APS and nephelometer measurements. Atmospheric Chemistry and Physics, 2012, 12, 11781-11793.	1.9	15
391	Aerosol charging state at an urban site: new analytical approach and implications for ion-induced nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4647-4666.	1.9	10
392	Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 2012, 12, 5113-5127.	1.9	222
393	Evidence of an elevated source of nucleation based on model simulations and data from the NIFTy experiment. Atmospheric Chemistry and Physics, 2012, 12, 8021-8036.	1.9	12
394	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. Atmospheric Chemistry and Physics, 2012, 12, 941-959.	1.9	51
395	Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth. Atmospheric Chemistry and Physics, 2012, 12, 9427-9439.	1.9	76
396	Estimation of aerosol particle number distributions with Kalman Filtering – Part 1: Theory, general aspects and statistical validity. Atmospheric Chemistry and Physics, 2012, 12, 11767-11779.	1.9	12

Тиикка РетА́я́А́¤

#	Article	IF	CITATIONS
397	Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmospheric Chemistry and Physics, 2012, 12, 4117-4125.	1.9	393
398	Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 2012, 7, 1651-1667.	5.5	435
399	Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science, 2012, 337, 1078-1081.	6.0	618
400	Ferroelectric Transition Vanishes in (NH ₄) ₂ SO ₄ Precipitated in Small-Sized Aqueous Droplets. Journal of Physical Chemistry C, 2012, 116, 9372-9377.	1.5	5
401	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	1.1	41
402	Aliphatic and aromatic amines in atmospheric aerosol particles: Comparison of three ionization techniques in liquid chromatography-mass spectrometry and method development. Talanta, 2012, 97, 55-62.	2.9	31
403	A new atmospherically relevant oxidant of sulphur dioxide. Nature, 2012, 488, 193-196.	13.7	465
404	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
405	Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12, 12037-12059.	1.9	285
406	Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO ₂ . Journal of Physical Chemistry Letters, 2012, 3, 2892-2896.	2.1	88
407	In-situ observations of EyjafjallajĶkull ash particles by hot-air balloon. Atmospheric Environment, 2012, 48, 104-112.	1.9	14
408	Influence of the sampling site, the season of the year, the particle size and the number of nucleation events on the chemical composition of atmospheric ultrafine and total suspended particles. Atmospheric Environment, 2012, 49, 60-68.	1.9	10
409	Optimisation of the operation regimes for the water-based condensation particle counter. Lithuanian Journal of Physics, 2012, 52, 253-260.	0.1	2
410	Comprehensive two-dimensional gas chromatography, a valuable technique for screening and semiquantitation of different chemical compounds in ultrafine 30 nm and 50 nm aerosol particles. Journal of Environmental Monitoring, 2011, 13, 2994.	2.1	15
411	A complete methodology for the reliable collection, sample preparation, separation and determination of organic compounds in ultrafine 30 nm, 40 nm and 50 nm atmospheric aerosol particles. Analytical Methods, 2011, 3, 2501.	1.3	21
412	The role of relative humidity in continental new particle formation. Journal of Geophysical Research, 2011, 116, .	3.3	127
413	Correction to "Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles― Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	5
414	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	13.7	1,114

#	Article	IF	CITATIONS
415	Growth rates of nucleation mode particles in HyytiÃkaduring 2003â^'2009: variation with particle size, season, data analysis method and ambient conditions. Atmospheric Chemistry and Physics, 2011, 11, 12865-12886.	1.9	173
416	Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy. Atmospheric Chemistry and Physics, 2011, 11, 10317-10329.	1.9	30
417	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	1.9	108
418	A statistical proxy for sulphuric acid concentration. Atmospheric Chemistry and Physics, 2011, 11, 11319-11334.	1.9	124
419	Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign. Atmospheric Chemistry and Physics, 2011, 11, 12369-12386.	1.9	110
420	Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmospheric Chemistry and Physics, 2011, 11, 13269-13285.	1.9	121
421	Spatial and vertical extent of nucleation events in the Midwestern USA: insights from the Nucleation In ForesTs (NIFTy) experiment. Atmospheric Chemistry and Physics, 2011, 11, 1641-1657.	1.9	37
422	The effect of H ₂ SO ₄ – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmospheric Chemistry and Physics, 2011, 11, 3007-3019.	1.9	69
423	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	1.9	392
424	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmospheric Chemistry and Physics, 2011, 11, 9019-9036.	1.9	160
425	An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Science and Technology, 2011, 45, 522-532.	1.5	72
426	Observations of Nano-CN in the Nocturnal Boreal Forest. Aerosol Science and Technology, 2011, 45, 499-509.	1.5	43
427	Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011, 11, 767-798.	1.9	228
428	Comparison of quartz and Teflon filters for simultaneous collection of size-separated ultrafine aerosol particles and gas-phase zero samples. Analytical and Bioanalytical Chemistry, 2011, 400, 3527-3535.	1.9	24
429	Particle Size Magnifier for Nano-CN Detection. Aerosol Science and Technology, 2011, 45, 533-542.	1.5	283
430	Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere. Physical Review Letters, 2011, 106, 228302.	2.9	72
431	A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 321-343.	1.9	297
432	Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions. Atmospheric Chemistry and Physics, 2011, 11, 5277-5287.	1.9	44

Тиикка РетА́**¤**́А́¤

#	Article	IF	CITATIONS
433	Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw. Atmospheric Chemistry and Physics, 2011, 11, 2603-2624.	1.9	126
434	Soil Nitrites Influence Atmospheric Chemistry. Science, 2011, 333, 1586-1587.	6.0	32
435	Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2011, 4, 2767-2776.	1.2	47
436	Intercomparison of air ion spectrometers: an evaluation of results in varying conditions. Atmospheric Measurement Techniques, 2011, 4, 805-822.	1.2	34
437	Local Air Pollution versus Short–range Transported Dust Episodes: A Comparative Study for Submicron Particle Number Concentration. Aerosol and Air Quality Research, 2011, 11, 109-119.	0.9	23
438	On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 11223-11242.	1.9	262
439	EUCAARI ion spectrometer measurements at 12 European sites $\hat{a} \in \hat{a}$ analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.	1.9	248
440	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	1.9	144
441	Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 1885-1898.	1.9	89
442	Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10, 3743-3757.	1.9	48
443	Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism. Atmospheric Chemistry and Physics, 2010, 10, 7009-7016.	1.9	42
444	Laboratory study on new particle formation from the reaction OH + SO ₂ : influence of experimental conditions, H ₂ O vapour, NH ₃ and the amine tert-butylamine on the overall process. Atmospheric Chemistry and Physics, 2010, 10,	1.9	194
445	7101-7116. Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	1.9	170
446	Roadside aerosol study using hygroscopic, organic and volatility TDMAs: Characterization and mixing state. Atmospheric Environment, 2010, 44, 976-986.	1.9	30
447	A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3, 1039-1053.	1.2	436
448	Modelling Ag-particle activation and growth in a TSI WCPC model 3785. Atmospheric Measurement Techniques, 2010, 3, 273-281.	1.2	10
449	The Role of Sulfuric Acid in Atmospheric Nucleation. Science, 2010, 327, 1243-1246.	6.0	694
450	Impacts of volatilisation on light scattering and filter-based absorption measurements: a case study. Atmospheric Measurement Techniques, 2010, 3, 1205-1216.	1.2	13

Тиикка РетА́**¤**́А́¤

#	Article	IF	CITATIONS
451	Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophysical Research Letters, 2010, 37, .	1.5	257
452	Growth rates during coastal and marine new particle formation in western Ireland. Journal of Geophysical Research, 2010, 115, .	3.3	36
453	Laboratory Verification of PH-CPC's Ability to Monitor Atmospheric Sub-3 nm Clusters. Aerosol Science and Technology, 2009, 43, 126-135.	1.5	80
454	Connection of Sulfuric Acid to Atmospheric Nucleation in Boreal Forest. Environmental Science & Technology, 2009, 43, 4715-4721.	4.6	84
455	On the Quantitative Low-Level Aerosol Measurements Using Ceilometer-Type Lidar. Journal of Atmospheric and Oceanic Technology, 2009, 26, 2340-2352.	0.5	20
456	Charged and total particle formation and growth rates during EUCAARI 2007 campaign in HyytiÃÞä Atmospheric Chemistry and Physics, 2009, 9, 4077-4089.	1.9	104
457	Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9, 7435-7448.	1.9	348
458	Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest. Atmospheric Chemistry and Physics, 2009, 9, 3317-3330.	1.9	56
459	Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmospheric Research, 2008, 90, 278-286.	1.8	77
460	On Operation of the Ultra-Fine Water-Based CPC TSI 3786 and Comparison with Other TSI Models (TSI) Tj ETQq0	0.0 rgBT 1.5	Oyerlock 10
461	Size distributions, sources and source areas of water-soluble organic carbon in urban background air. Atmospheric Chemistry and Physics, 2008, 8, 5635-5647.	1.9	66
462	Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.	1.9	74
463	SO ₂ oxidation products other than H ₂ SO ₄ as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications. Atmospheric Chemistry and Physics. 2008. 8, 7255-7264	1.9	41
464	The role of VOC oxidation products in continental new particle formation. Atmospheric Chemistry and Physics, 2008, 8, 2657-2665.	1.9	202
465	Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment. Atmospheric Chemistry and Physics, 2008, 8, 4823-4839.	1.9	86
466	Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, .	0.8	4
467	Toward Direct Measurement of Atmospheric Nucleation. Science, 2007, 318, 89-92.	6.0	478
468	Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmospheric Chemistry and Physics, 2007, 7, 1333-1345.	1.9	116

#	Article	IF	CITATIONS
469	Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation. Atmospheric Chemistry and Physics, 2007, 7, 2705-2720.	1.9	64
470	Non-volatile residuals of newly formed atmospheric particles in the boreal forest. Atmospheric Chemistry and Physics, 2007, 7, 677-684.	1.9	57
471	Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid. Atmospheric Chemistry and Physics, 2007, 7, 211-222.	1.9	95
472	The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles. Journal of Aerosol Science, 2007, 38, 289-304.	1.8	145
473	New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, 2007, 112, .	3.3	257
474	Charging state of the atmospheric nucleation mode: Implications for separating neutral and ionâ€induced nucleation. Journal of Geophysical Research, 2007, 112, .	3.3	40
475	Horizontal homogeneity and vertical extent of new particle formation events. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 362-371.	0.8	66
476	Micrometeorological Observations of a Microburst in Southern Finland. Boundary-Layer Meteorology, 2007, 125, 343-359.	1.2	19
477	On Water Condensation Particle Counters and their Applicability to Field Measurements. , 2007, , 707-710.		1
478	Measured Neutral and Charged Aerosol Particle Number Size Distributions in Russia. , 2007, , 659-663.		0
479	Measurement of the Charging State with an Ion-DMPS to Estimate the Contribution of Ion-induced Nucleation. , 2007, , 397-401.		Ο
480	Investigating the Chemical Composition of Growing Nucleation Mode Particles with CPC Battery. , 2007, , 984-988.		0
481	Atmospheric Charged and Total Particle Formation Rates below 3 nm. , 2007, , 953-956.		Ο
482	Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmospheric Chemistry and Physics, 2006, 6, 4079-4091.	1.9	444
483	Detection Efficiency of a Water-Based TSI Condensation Particle Counter 3785. Aerosol Science and Technology, 2006, 40, 1090-1097.	1.5	56
484	On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 2005, 5, 409-416.	1.9	205
485	Effects of SO ₂ oxidation on ambient aerosol growth in water and ethanol vapours. Atmospheric Chemistry and Physics, 2005, 5, 767-779.	1.9	33
486	The contribution of sulfuric acid and non-volatile compounds on the growth of freshly formed atmospheric aerosols. Geophysical Research Letters, 2005, 32, .	1.5	113

Тиикка РетÃ**¤**ä

#	Article	IF	CITATIONS
487	Nucleation rate and vapor concentration estimations using a least squares aerosol dynamics method. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	14
488	Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 2004, 35, 143-176.	1.8	2,034
489	Ion production rate in a boreal forest based on ion, particle and radiation measurements. Atmospheric Chemistry and Physics, 2004, 4, 1933-1943.	1.9	120
490	Overview of the field measurement campaign in HyytiĂäAugust 2001 in the framework of the EU project OSOA. Atmospheric Chemistry and Physics, 2004, 4, 657-678.	1.9	56
491	Fluxes of carbon dioxide and water vapour over Scots pine forest and clearing. Agricultural and Forest Meteorology, 2002, 111, 187-202.	1.9	70
492	Arctic air pollution: Challenges and opportunities for the next decade. Elementa, 0, 4, 000104.	1.1	53
493	Quiet New Particle Formation in the Atmosphere. Frontiers in Environmental Science, 0, 10, .	1.5	10