Jos W F Valle

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3296486/jose-w-f-valle-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,861 71 133 393 h-index g-index citations papers 406 23,478 7.1 4.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
393	Scotogenic neutrino masses with gauged matter parity and gauge coupling unification. <i>Journal of High Energy Physics</i> , 2022 , 2022, 1	5.4	O
392	High-energy colliders as a probe of neutrino properties. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2022 , 137110	4.2	0
391	Electroweak symmetry breaking in the inverse seesaw mechanism. <i>Journal of High Energy Physics</i> , 2021 , 2021, 1	5.4	2
390	Trimaximal neutrino mixing from scotogenic A4 family symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2021 , 815, 136122	4.2	1
389	Phenomenology of fermion dark matter as neutrino mass mediator with gauged B-L. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2021 , 817, 136292	4.2	3
388	Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies. <i>Journal of High Energy Physics</i> , 2021 , 2021, 1	5.4	2
387	The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2021 , 819, 136458	4.2	3
386	Dark matter as the origin of neutrino mass in the inverse seesaw mechanism. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2021 , 821, 136609	4.2	1
385	Simple theory for scotogenic dark matter with residual matter-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 809, 135757	4.2	10
384	Reloading the axion in a 3-3-1 setup. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 810, 135829	4.2	0
383	Predictions from warped flavor dynamics based on the T? family group. <i>Physical Review D</i> , 2020 , 102,	4.9	8
382	Volume III. DUNE far detector technical coordination. <i>Journal of Instrumentation</i> , 2020 , 15, T08009-T080	0@9	8
381	Phenomenology of scotogenic scalar dark matter. European Physical Journal C, 2020 , 80, 1	4.2	13
380	Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory. <i>Physical Review D</i> , 2020 , 102,	4.9	6
379	Probing new neutral gauge bosons with CENS and neutrino-electron scattering. <i>Physical Review D</i> , 2020 , 101,	4.9	12
378	A theory for scotogenic dark matter stabilised by residual gauge symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 802, 135254	4.2	9
377	Flavour and CP predictions from orbifold compactification. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 801, 135195	4.2	8

(2019-2020)

376	Scotogenic dark matter and Dirac neutrinos from unbroken gauged B L symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 807, 135537	4.2	6
375	Probing the predictions of an orbifold theory of flavor. <i>Physical Review D</i> , 2020 , 101,	4.9	4
374	Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with liquid Argon. <i>Journal of High Energy Physics</i> , 2020 , 2020, 1	5.4	17
373	Volume I. Introduction to DUNE. <i>Journal of Instrumentation</i> , 2020 , 15, T08008-T08008	1	67
372	XENON1T signal from transition neutrino magnetic moments. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 808, 135685	4.2	21
371	Cornering (quasi) degenerate neutrinos with cosmology. <i>Journal of High Energy Physics</i> , 2020 , 2020, 1	5.4	2
370	Scotogenic dark matter in an orbifold theory of flavor. <i>Journal of High Energy Physics</i> , 2020 , 2020, 1	5.4	0
369	First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. <i>Journal of Instrumentation</i> , 2020 , 15, P12004-P12004	1	29
368	Gravitational footprints of massive neutrinos and lepton number breaking. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 807, 135577	4.2	5
367	Consistency of the dynamical high-scale type-I seesaw mechanism. <i>Physical Review D</i> , 2020 , 101,	4.9	5
366	Dirac neutrinos from PecceiQuinn symmetry: A fresh look at the axion. <i>Modern Physics Letters A</i> , 2020 , 35, 2050176	1.3	4
365	Volume IV. The DUNE far detector single-phase technology. <i>Journal of Instrumentation</i> , 2020 , 15, T080	1 0 -T08	019
364	Scotogenic dark matter stability from gauged matter parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 798, 135013	4.2	10
363	Status and prospects of B i-largelleptonic mixing. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 796, 162-167</i>	4.2	5
362	Simplest scoto-seesaw mechanism. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 789, 132-136	4.2	15
361	Predicting neutrino oscillations with Bi-largellepton mixing matrices. <i>Physics Letters, Section B:</i> Nuclear, Elementary Particle and High-Energy Physics, 2019 , 792, 461-464	4.2	5
360	Bound-state dark matter with Majorana neutrinos. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 790, 303-307	4.2	11
359	Spontaneous Breaking of Lepton Number and the Cosmological Domain Wall Problem. <i>Physical Review Letters</i> , 2019 , 122, 151301	7.4	6

358	Asymmetric dark matter, inflation, and leptogenesis from BII symmetry breaking. <i>Physical Review D</i> , 2019 , 99,	4.9	14
357	CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I. <i>Journal of High Energy Physics</i> , 2019 , 2019, 1	5.4	5
356	Testing generalized CP symmetries with precision studies at DUNE. <i>Physical Review D</i> , 2019 , 99,	4.9	8
355	Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering. Journal of High Energy Physics, 2019, 2019, 1	5.4	35
354	Light majoron cold dark matter from topological defects and the formation of boson stars. <i>Journal of Cosmology and Astroparticle Physics</i> , 2019 , 2019, 029-029	6.4	8
353	CP symmetries as guiding posts: Revamping tribimaximal mixing. II Physical Review D, 2019, 100,	4.9	5
352	Neutrino predictions from a left-right symmetric flavored extension of the standard model. <i>Journal of High Energy Physics</i> , 2019 , 2019, 1	5.4	15
351	Electroweak breaking and Higgs boson profile in the simplest linear seesaw model. <i>Journal of High Energy Physics</i> , 2019 , 2019, 1	5.4	3
350	Flavour-symmetric type-II Dirac neutrino seesaw mechanism. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 779, 257-261	4.2	20
349	The dark side of flipped trinification. <i>Journal of High Energy Physics</i> , 2018 , 2018, 1	5.4	18
348	Neutrino predictions from generalized CP symmetries of charged leptons. <i>Journal of High Energy Physics</i> , 2018 , 2018, 1	5.4	12
347	Seesaw Dirac neutrino mass through dimension-six operators. <i>Physical Review D</i> , 2018 , 98,	4.9	21
346	Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 778, 459-463	4.2	16
345	Can one ever prove that neutrinos are Dirac particles?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 781, 302-305	4.2	20
344	SU(6) Grand Unification of 3-3-1 Model. Springer Proceedings in Physics, 2018, 377-380	0.2	
343	Seesaw roadmap to neutrino mass and dark matter. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 781, 122-128	4.2	46
342	Inverse seesaw mechanism with compact supersymmetry: Enhanced naturalness and light superpartners. <i>Physical Review D</i> , 2018 , 98,	4.9	2
341	New Physics Landmarks: Dark Matter and Neutrino Masses. <i>Advances in High Energy Physics</i> , 2018 , 2018, 1-2	1	1

340	Realistic tribimaximal neutrino mixing. <i>Physical Review D</i> , 2018 , 98,	4.9	12
339	SO(3) family symmetry and axions. <i>Physical Review D</i> , 2018 , 98,	4.9	12
338	U(1)B3BL2 gauge symmetry as a simple description of b-manomalies. <i>Physical Review D</i> , 2018 , 98,	4.9	24
337	Decaying warm dark matter and structure formation. <i>Journal of Cosmology and Astroparticle Physics</i> , 2018 , 2018, 026-026	6.4	11
336	Zooming in on neutrino oscillations with DUNE. <i>Physical Review D</i> , 2018 , 97,	4.9	18
335	Exploring the potential of short-baseline physics at Fermilab. <i>Physical Review D</i> , 2018 , 97,	4.9	10
334	Status of neutrino oscillations 2018: 3[hint for normal mass ordering and improved CP sensitivity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 782, 633-640	4.2	372
333	Bound-state dark matter and Dirac neutrino masses. <i>Physical Review D</i> , 2018 , 97,	4.9	22
332	Unifying left fi ght symmetry and 331 electroweak theories. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 766, 35-40	4.2	15
331	A White Paper on keV sterile neutrino Dark Matter. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 025-025	6.4	167
331		6.4 4·9	167 23
	2017, 2017, 025-025 Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing. <i>Physical Review D</i> ,		<u> </u>
330	2017, 2017, 025-025 Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing. <i>Physical Review D</i> , 2017, 95, Dirac neutrinos and dark matter stability from lepton quarticity. <i>Physics Letters, Section B: Nuclear</i> ,	4.9	23
330	 2017, 2017, 025-025 Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing. <i>Physical Review D</i>, 2017, 95, Dirac neutrinos and dark matter stability from lepton quarticity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i>, 2017, 767, 209-213 Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model. 	4.9	23
330 329 328	Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing. <i>Physical Review D</i> , 2017 , 95, Dirac neutrinos and dark matter stability from lepton quarticity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 767, 209-213 Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model. <i>Journal of High Energy Physics</i> , 2017 , 2017, 1 Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy</i>	4.9	235310
330 329 328 327	 2017, 2017, 025-025 Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing. Physical Review D, 2017, 95, Dirac neutrinos and dark matter stability from lepton quarticity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 767, 209-213 Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model. Journal of High Energy Physics, 2017, 2017, 1 Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 524-531 Predictive Pati-Salam theory of fermion masses and mixing. Journal of High Energy Physics, 2017, 	4·9 4·2 5·4 4·2	23531017
330 329 328 327 326	Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing. <i>Physical Review D</i> , 2017 , 95, Dirac neutrinos and dark matter stability from lepton quarticity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 767, 209-213 Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model. <i>Journal of High Energy Physics</i> , 2017 , 2017, 1 Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 771, 524-531 Predictive Pati-Salam theory of fermion masses and mixing. <i>Journal of High Energy Physics</i> , 2017 , 2017, 1	4.9 4.2 5.4 4.2	23 53 10 17 21

322	Generalized bottom-tau unification, neutrino oscillations and dark matter: Predictions from a lepton quarticity flavor approach. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 773, 26-33	4.2	34
321	Cornering the revamped BMV model with neutrino oscillation data. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 774, 179-182	4.2	13
320	Three-family left-right symmetry with low-scale seesaw mechanism. <i>Journal of High Energy Physics</i> , 2017 , 2017, 1	5.4	9
319	Towards gauge coupling unification in left-right symmetric SU(3)cBU(3)LBU(3)RU(1)X theories. <i>Physical Review D</i> , 2017 , 96,	4.9	17
318	Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments. <i>Physical Review D</i> , 2017 , 96,	4.9	38
317	Resolving the atmospheric octant by an improved measurement of the reactor angle. <i>Physical Review D</i> , 2017 , 96,	4.9	6
316	Neutrino oscillations from warped flavor symmetry: Predictions for long baseline experiments T2K, NOvA, and DUNE. <i>Physical Review D</i> , 2017 , 95,	4.9	9
315	Classifying CP transformations according to their texture zeros: Theory and implications. <i>Physical Review D</i> , 2016 , 94,	4.9	24
314	Flavor physics scenario for the 750 GeV diphoton anomaly. <i>Physical Review D</i> , 2016 , 93,	4.9	11
313	Warped flavor symmetry predictions for neutrino physics. <i>Journal of High Energy Physics</i> , 2016 , 2016, 1	5.4	35
312	Addendum to Updating neutrino magnetic moment constraints[Phys. Lett. B 753 (2016) 191[198]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 568	4.2	11
311	Generalized I eflection symmetry and leptonic CP violation. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 753, 644-652	4.2	53
310	Vacuum stability with spontaneous violation of lepton number. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 756, 345-349	4.2	17
309	Updating neutrino magnetic moment constraints. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 753, 191-198	4.2	29
308	Consistency of WIMP Dark Matter as radiative neutrino mass messenger. <i>Journal of High Energy Physics</i> , 2016 , 2016, 1	5.4	21
307	Electroweak breaking and neutrino mass: Invisible Higgs decays at the LHC (type II seesaw). <i>New Journal of Physics</i> , 2016 , 18, 033033	2.9	14
306	Constraining flavor changing interactions from LHC Run-2 dilepton bounds with vector mediators. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 763, 269-274	4.2	31
305	Neutrino oscillations and the seesaw origin of neutrino mass. <i>Nuclear Physics B</i> , 2016 , 908, 436-455	2.8	23

(2015-2016)

304	Realistic SU(3)c?SU(3)L?U(1)X model with a type II Dirac neutrino seesaw mechanism. <i>Physical Review D</i> , 2016 , 94,	4.9	30	
303	Dynamical seesaw mechanism for Dirac neutrinos. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 755, 363-366	4.2	32	
302	String completion of an SU(3)c? SU(3)L? U(1)X electroweak model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 759, 471-478	4.2	21	
301	Two-loop Dirac neutrino mass and WIMP dark matter. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 762, 214-218	4.2	64	
300	331 models and grand unification: From minimal SU(5) to minimal SU(6). <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 762, 432-440	4.2	17	
299	Constraining right-handed neutrinos. <i>Nuclear and Particle Physics Proceedings</i> , 2016 , 273-275, 1909-191	4 0.4	1	
298	Naturally light neutrinos in Diracon model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 762, 162-165	4.2	27	
297	CP violation from flavor symmetry in a lepton quarticity dark matter model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 761, 431-436	4.2	24	
296	The weak mixing angle from low energy neutrino measurements: A global update. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2016 , 761, 450-455	4.2	9	
295	New Ambiguity in Probing CP Violation in Neutrino Oscillations. <i>Physical Review Letters</i> , 2016 , 117, 061	8 9.4	37	
294	Small neutrino masses and gauge coupling unification. <i>Physical Review D</i> , 2015 , 91,	4.9	28	
293	Neutrino mass and invisible Higgs decays at the LHC. <i>Physical Review D</i> , 2015 , 91,	4.9	23	
292	The Cabibbo angle as a universal seed for quark and lepton mixings. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 748, 1-4	4.2	9	
291	Status and Implications of Neutrino Masses: A Brief Panorama. <i>Advanced Series on Directions in High Energy Physics</i> , 2015 , 25-37	О		
290	Predicting charged lepton flavor violation from 3-3-1 gauge symmetry. <i>Physical Review D</i> , 2015 , 92,	4.9	47	
289	Consistency of the triplet seesaw model revisited. <i>Physical Review D</i> , 2015 , 92,	4.9	34	
288	Probing neutrino magnetic moments at the Spallation Neutron Source facility. <i>Physical Review D</i> , 2015 , 92,	4.9	34	
287	On the description of nonunitary neutrino mixing. <i>Physical Review D</i> , 2015 , 92,	4.9	63	

286	Are the B decay anomalies related to neutrino oscillations?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 750, 367-371	4.2	26
285	Status and implications of neutrino masses: A brief panorama. <i>International Journal of Modern Physics A</i> , 2015 , 30, 1530034	1.2	1
284	Sensitivities to neutrino electromagnetic properties at the TEXONO experiment. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 750, 459-465	4.2	17
283	Relating quarks and leptons with the T 7 flavour group. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 742, 99-106	4.2	30
282	Neutrino masses: evidences and implications. <i>Journal of Physics: Conference Series</i> , 2014 , 485, 012005	0.3	
281	Constraints on majoron dark matter from cosmic microwave background and astrophysical observations. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2014 , 742, 154-157	1.2	3
280	Leptogenesis with a dynamical seesaw scale. <i>Journal of Cosmology and Astroparticle Physics</i> , 2014 , 2014, 052-052	6.4	15
279	Testing the Standard Model and beyond with the LENA proposal. <i>Journal of Physics: Conference Series</i> , 2014 , 485, 012044	0.3	
278	Planck-scale effects on WIMP dark matter. Frontiers in Physics, 2014, 1,	3.9	3
277	Neutrino oscillations refitted. <i>Physical Review D</i> , 2014 , 90,	4.9	334
277	Neutrino oscillations refitted. <i>Physical Review D</i> , 2014 , 90, The Low-Scale Approach to Neutrino Masses. <i>Advances in High Energy Physics</i> , 2014 , 2014, 1-15	4.9	334 88
276	The Low-Scale Approach to Neutrino Masses. <i>Advances in High Energy Physics</i> , 2014 , 2014, 1-15	1	88
276 275	The Low-Scale Approach to Neutrino Masses. <i>Advances in High Energy Physics</i> , 2014 , 2014, 1-15 Inflation and majoron dark matter in the neutrino seesaw mechanism. <i>Physical Review D</i> , 2014 , 90,	1 4.9	88
276 275 274	The Low-Scale Approach to Neutrino Masses. <i>Advances in High Energy Physics</i> , 2014 , 2014, 1-15 Inflation and majoron dark matter in the neutrino seesaw mechanism. <i>Physical Review D</i> , 2014 , 90, Is charged lepton flavor violation a high energy phenomenon?. <i>Physical Review D</i> , 2014 , 89,	1 4.9 4.9	88 24 33
276 275 274 273	The Low-Scale Approach to Neutrino Masses. <i>Advances in High Energy Physics</i> , 2014 , 2014, 1-15 Inflation and majoron dark matter in the neutrino seesaw mechanism. <i>Physical Review D</i> , 2014 , 90, Is charged lepton flavor violation a high energy phenomenon?. <i>Physical Review D</i> , 2014 , 89, Dirac neutrinos from flavor symmetry. <i>Physical Review D</i> , 2014 , 89,	1 4.9 4.9	88 24 33 50
276 275 274 273	The Low-Scale Approach to Neutrino Masses. <i>Advances in High Energy Physics</i> , 2014 , 2014, 1-15 Inflation and majoron dark matter in the neutrino seesaw mechanism. <i>Physical Review D</i> , 2014 , 90, Is charged lepton flavor violation a high energy phenomenon?. <i>Physical Review D</i> , 2014 , 89, Dirac neutrinos from flavor symmetry. <i>Physical Review D</i> , 2014 , 89, Radiative neutrino mass in 3-3-1 scheme. <i>Physical Review D</i> , 2014 , 90,	1 4.9 4.9 4.9	88 24 33 50 37

268	Bilinear R-parity violation with flavor symmetry. Journal of High Energy Physics, 2013, 2013, 1	5.4	7
267	Neutrino mixing with revamped A4 flavor symmetry. <i>Physical Review D</i> , 2013 , 88,	4.9	18
266	Neutrino masses and mixing: a flavour symmetry roadmap. Fortschritte Der Physik, 2013, 61, 466-492	5.7	45
265	Quark-lepton mass relation and CKM mixing in an A4 extension of the minimal supersymmetric standard model. <i>Physical Review D</i> , 2013 , 88,	4.9	45
264	Bilarge neutrino mixing and Abelian flavor symmetry. <i>Physical Review D</i> , 2013 , 87,	4.9	13
263	Updated CMB and x- and Eray constraints on Majoron dark matter. <i>Physical Review D</i> , 2013 , 88,	4.9	42
262	Low-energy neutrino-electron scattering as a standard model probe: The potential of LENA as case study. <i>Physical Review D</i> , 2012 , 85,	4.9	14
261	Predictive discrete dark matter model and neutrino oscillations. <i>Physical Review D</i> , 2012 , 86,	4.9	18
260	Gravitino dark matter and neutrino masses with bilinear R-parity violation. <i>Physical Review D</i> , 2012 , 85,	4.9	24
259	Constraining neutrinoless double beta decay. <i>Nuclear Physics B</i> , 2012 , 861, 259-270	2.8	43
258	Global status of neutrino oscillation parameters after Neutrino-2012. Physical Review D, 2012, 86,	4.9	352
257	Understanding and Probing Neutrinos. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2012 , 229-232, 23-29		2
256	Lepton asymmetries and primordial hypermagnetic helicity evolution. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 008-008	6.4	26
255	Heavy neutrinos and lepton flavor violation in left-right symmetric models at the LHC. <i>Physical Review D</i> , 2012 , 86,	4.9	86
254	New neutrino mass sum rule from the inverse seesaw mechanism. <i>Physical Review D</i> , 2012 , 86,	4.9	24
253	Probing neutralino properties in minimal supergravity with bilinear R-parity violation. <i>Physical Review D</i> , 2012 , 86,	4.9	10
252	Flavor in heavy neutrino searches at the LHC. <i>Physical Review D</i> , 2012 , 85,	4.9	29
251	Bilarge neutrino mixing and the Cabibbo angle. <i>Physical Review D</i> , 2012 , 86,	4.9	23

250	Neutrinos and dark matter. Journal of Physics: Conference Series, 2012, 384, 012022	0.3	2
249	Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters. <i>New Journal of Physics</i> , 2011 , 13, 063004	2.9	155
248	Phenomenology of dark matter from A 4 flavor symmetry. <i>Journal of High Energy Physics</i> , 2011 , 2011, 1	5.4	42
247	Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw. <i>Journal of High Energy Physics</i> , 2011 , 2011, 1	5.4	70
246	Symmetrical parametrizations of the lepton mixing matrix. <i>Physical Review D</i> , 2011 , 84,	4.9	52
245	Global constraints on muon-neutrino nonstandard interactions. <i>Physical Review D</i> , 2011 , 83,	4.9	35
244	Chern-Simons anomaly as polarization effect. <i>Journal of Cosmology and Astroparticle Physics</i> , 2011 , 2011, 048-048	6.4	17
243	Relating quarks and leptons without grand unification. <i>Physical Review D</i> , 2011 , 84,	4.9	23
242	Where we are on 13: addendum to Clobal neutrino data and recent reactor fluxes: status of three-flavor oscillation parameters (INew Journal of Physics, 2011, 13, 109401)	2.9	185
241	Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider. <i>Physical Review D</i> , 2010 , 82,	4.9	13
240	Neutrino mass in supersymmetry 2010 ,		1
239	A4-based neutrino masses with Majoron decaying dark matter. <i>Physical Review D</i> , 2010 , 82,	4.9	21
238	Discrete dark matter. <i>Physical Review D</i> , 2010 , 82,	4.9	56
237	Calculable inverse-seesaw neutrino masses in supersymmetry. <i>Physical Review D</i> , 2010 , 81,	4.9	23
236	Interplay between collective effects and nonstandard interactions of supernova neutrinos. <i>Physical Review D</i> , 2010 , 81,	4.9	14
235	Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data. <i>Journal of Physics: Conference Series</i> , 2010 , 259, 012091	0.3	2
234	Progress in the understanding of neutrino properties. <i>Journal of Physics: Conference Series</i> , 2010 , 203, 012009	0.3	3
233	The Hunt for New Physics at the Large Hadron Collider. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2010 , 200-202, 185-417		99

(2008-2009)

232	Finding the Higgs boson through supersymmetry. <i>Physical Review D</i> , 2009 , 80,	4.9	4
231	Physics at a future Neutrino Factory and super-beam facility. <i>Reports on Progress in Physics</i> , 2009 , 72, 106201	14.4	147
230	Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity. <i>Journal of High Energy Physics</i> , 2009 , 2009, 003-003	5.4	33
229	Neutrinos as cosmic messengers 2009,		1
228	A4-based tri-bimaximal mixing within inverse and linear seesaw schemes. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2009 , 679, 454-459	4.2	73
227	Modelling tribimaximal neutrino mixing. <i>Physical Review D</i> , 2009 , 79,	4.9	22
226	Neutrino masses, leptogenesis, and dark matter in a hybrid seesaw model. <i>Physical Review D</i> , 2009 , 79,	4.9	23
225	Inverse tribimaximal type-III seesaw mechanism and lepton flavor violation. <i>Physical Review D</i> , 2009 , 80,	4.9	33
224	Confusing nonzero 113 with nonstandard interactions in the solar neutrino sector. <i>Physical Review D</i> , 2009 , 80,	4.9	33
223	Probing nonstandard neutrino-electron interactions with solar and reactor neutrinos. <i>Physical Review D</i> , 2009 , 79,	4.9	67
222	Constraining nonstandard neutrino-quark interactions with solar, reactor, and accelerator data. <i>Physical Review D</i> , 2009 , 80,	4.9	48
221	Is the baryon asymmetry of the Universe related to galactic magnetic fields?. <i>Physical Review D</i> , 2009 , 80,	4.9	25
220	Constraining nonstandard neutrino-electron interactions. <i>Physical Review D</i> , 2008 , 77,	4.9	67
219	Three-flavour neutrino oscillation update. <i>New Journal of Physics</i> , 2008 , 10, 113011	2.9	461
218	Probing minimal supergravity in the type-I seesaw mechanism with lepton flavor violation at the CERN LHC. <i>Physical Review D</i> , 2008 , 78,	4.9	31
217	Tribimaximal neutrino mixing and neutrinoless double beta decay. <i>Physical Review D</i> , 2008 , 78,	4.9	55
216	Lepton asymmetries and the growth of cosmological seed magnetic fields. <i>Journal of High Energy Physics</i> , 2008 , 2008, 067-067	5.4	16
215	Probing bilinear R-parity violating supergravity at the LHC. <i>Journal of High Energy Physics</i> , 2008 , 2008, 048-048	5.4	43

214	Parameter degeneracy in flavor-dependent reconstruction of supernova neutrino fluxes. <i>Journal of Cosmology and Astroparticle Physics</i> , 2008 , 2008, 006	6.4	21
213	X-ray photons from late-decaying majoron dark matter. <i>Journal of Cosmology and Astroparticle Physics</i> , 2008 , 2008, 013	6.4	49
212	Fermion masses, leptogenesis, and supersymmetric SO(10) unification. <i>Physical Review D</i> , 2008 , 77,	4.9	4
211	CP violation and neutrino oscillations. <i>Progress in Particle and Nuclear Physics</i> , 2008 , 60, 338-402	10.6	154
210	Probing a supersymmetric model for neutrino masses at ultrahigh energy neutrino telescopes. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2008 , 662, 185-189	4.2	1
209	Can OPERA help in constraining neutrino non-standard interactions?. <i>Physics Letters, Section B:</i> Nuclear, Elementary Particle and High-Energy Physics, 2008 , 668, 197-201	4.2	29
208	Collider aspects of flavor physics at high Q. European Physical Journal C, 2008, 57, 183-307	4.2	38
207	Minimal supergravity scalar neutrino dark matter and inverse seesaw neutrino masses. <i>Physical Review Letters</i> , 2008 , 101, 161802	7.4	75
206	Thermal leptogenesis in extended supersymmetric seesaw model. <i>Physical Review D</i> , 2007 , 75,	4.9	11
205	Minimal supergravity radiative effects on the tribimaximal neutrino mixing pattern. <i>Physical Review D</i> , 2007 , 75,	4.9	34
204	Concluding talk at NOW 2006. Nuclear Physics, Section B, Proceedings Supplements, 2007, 168, 413-422		3
203	Probing the internal solar magnetic field through g modes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 453-458	4.3	20
202	Exact relativistic decay endpoint spectrum. <i>Physical Review C</i> , 2007 , 76,	2.7	23
201	Probing nonstandard neutrino interactions with supernova neutrinos. <i>Physical Review D</i> , 2007 , 76,	4.9	53
200	Predictive flavor symmetries of the neutrino mass matrix. <i>Physical Review Letters</i> , 2007 , 99, 151802	7.4	90
199	Decaying warm dark matter and neutrino masses. <i>Physical Review Letters</i> , 2007 , 99, 121301	7.4	83
198	Are solar neutrino oscillations robust?. <i>Journal of High Energy Physics</i> , 2006 , 2006, 008-008	5.4	114
197	R parity violation assisted thermal leptogenesis in the seesaw mechanism. <i>Physical Review Letters</i> , 2006 , 96, 011601	7.4	19

(2005-2006)

196	Production and decays of supersymmetric Higgs bosons in spontaneously broken R parity. <i>Physical Review D</i> , 2006 , 73,	4.9	16
195	Neutrino physics overview. Journal of Physics: Conference Series, 2006, 53, 473-505	0.3	64
194	Constraining nonstandard interactions in Be or Dee scattering. <i>Physical Review D</i> , 2006 , 73,	4.9	70
193	Enhanced Bleonversion in nuclei in the inverse seesaw model. Nuclear Physics B, 2006, 752, 80-92	2.8	80
192	Neutrinos in astroparticle physics. AIP Conference Proceedings, 2006,	О	2
191	Radiative zone solar magnetic fields and g modes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 845-850	4.3	12
190	Supersymmetry parameter analysis: SPA convention and project. <i>European Physical Journal C</i> , 2006 , 46, 43-60	4.2	203
189	Probing neutrino mass with displaced vertices at the Fermilab Tevatron. <i>Physical Review D</i> , 2005 , 71,	4.9	20
188	Enhanced lepton flavor violation in the supersymmetric inverse seesaw model. <i>Physical Review D</i> , 2005 , 72,	4.9	130
187	Solar neutrino day-night effect and 🛘 3. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 145, 57-60		
186	Subleading effects in the 1-2 sector: Non-standard neutrino interactions. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 145, 61-64		
185	Status of global fits to neutrino oscillations. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 143, 523		
184	Why solar anti-neutrino data are very sensitive to Majorana neutrino magnetic moment?. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 143, 514		
183	Neutrino Oscillations and New Physics. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 145, 141-147		3
182	Physics of Massive Neutrinos. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 149, 3-12		3
181	Neutrino masses and oscillations. AIP Conference Proceedings, 2005,	O	3
180	Geotomography with solar and supernova neutrinos. Journal of High Energy Physics, 2005, 2005, 053-05	535.4	9
179	Charge Breaking Minima in the Broken R-parity Minimal Supersymmetric Standard Model. <i>Journal of High Energy Physics</i> , 2005 , 2005, 020-020	5.4	3

178	Predicting neutrinoless double beta decay. <i>Physical Review D</i> , 2005 , 72,	4.9	49
177	Publisher Note: Predicting neutrinoless double beta decay [Phys. Rev. D 72, 091301 (2005)]. <i>Physical Review D</i> , 2005 , 72,	4.9	29
176	Supersymmetric SO10 seesaw mechanism with low B-L scale. <i>Physical Review Letters</i> , 2005 , 95, 161801	7.4	242
175	A simple analytic three-flavour description of the day-night effect in the solar neutrino flux. <i>Journal of High Energy Physics</i> , 2004 , 2004, 057-057	5.4	42
174	Cornering solar radiative-zone fluctuations with KamLAND and SNO salt. <i>Journal of Cosmology and Astroparticle Physics</i> , 2004 , 2004, 007-007	6.4	23
173	Enhanced solar antineutrino flux in random magnetic fields. <i>Physical Review D</i> , 2004 , 70,	4.9	33
172	Invisible Higgs boson decays in spontaneously broken R parity. <i>Physical Review D</i> , 2004 , 70,	4.9	20
171	Phenomenological tests of supersymmetric A4 family symmetry model of neutrino mass. <i>Physical Review D</i> , 2004 , 69,	4.9	102
170	Constraining the neutrino magnetic moment with antineutrinos from the sun. <i>Physical Review Letters</i> , 2004 , 93, 051304	7.4	49
169	Resonant origin for density fluctuations deep within the Sun: helioseismology and magneto-gravity waves. <i>Monthly Notices of the Royal Astronomical Society</i> , 2004 , 348, 609-624	4.3	31
168	MHD origin of density fluctuations deep within the Sun and their influence on neutrino oscillation parameters in LMA MSW scenario. <i>Physics of Atomic Nuclei</i> , 2004 , 67, 1147-1150	0.4	1
167	Status of global fits to neutrino oscillations. <i>New Journal of Physics</i> , 2004 , 6, 122-122	2.9	676
166	Supersymmetric origin of neutrino mass. New Journal of Physics, 2004, 6, 76-76	2.9	86
165	Standard and non-standard neutrino oscillations. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2003 , 29, 1819-1831	2.9	8
164	Testing the mechanism of R-parity breaking with slepton LSP decays. <i>Journal of High Energy Physics</i> , 2003 , 2003, 005-005	5.4	25
163	Probing neutrino mass with multilepton production at the Tevatron in the simplestR-parity violation model. <i>Journal of High Energy Physics</i> , 2003 , 2003, 071-071	5.4	11
162	Large Mixing Angle Oscillations as a Probe of the Deep Solar Interior. <i>Astrophysical Journal</i> , 2003 , 588, L65-L68	4.7	39
161	Status of neutrino oscillations and non-standard properties. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 114, 159-175		

(2001-2003)

16	60	Global analysis of neutrino oscillation data in four-neutrino schemes. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 114, 203-207		13
15	59	Standard and non-standard neutrino properties. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 118, 255-266		O
15	5 8	Underlying A4 symmetry for the neutrino mass matrix and the quark mixing matrix. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2003 , 552, 207-213	4.2	554
15	57	Combining the first KamLAND results with solar neutrino data. <i>Physical Review D</i> , 2003 , 67,	4.9	59
15	5 6	Status of three-neutrino oscillations after the SNO-salt data. <i>Physical Review D</i> , 2003 , 68,	4.9	125
15	55	Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results. <i>Physical Review D</i> , 2003 , 68,	4.9	104
15	54	Constraining Majorana neutrino electromagnetic properties from the LMA-MSW solution of the solar neutrino problem. <i>Nuclear Physics B</i> , 2003 , 648, 376-396	2.8	54
15	53	Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino mass model. <i>Physical Review D</i> , 2003 , 68,	4.9	17
15	52	Constraining neutrino oscillation parameters with current solar and atmospheric data. <i>Physical Review D</i> , 2003 , 67,	4.9	68
15	51	Probing supernova physics with neutrino oscillations. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2002 , 542, 239-244	4.2	29
15	50	Modeling quintessential inflation. Astroparticle Physics, 2002, 18, 287-306	2.4	79
12	19	Probing neutrino properties with charged scalar lepton decays. <i>Physical Review D</i> , 2002 , 66,	4.9	36
14	₄ 8	How sensitive is a neutrino factory to the angle theta(13)?. <i>Physical Review Letters</i> , 2002 , 88, 101804	7.4	62
12	17	Confronting spin flavor solutions of the solar neutrino problem with current and future solar neutrino data. <i>Physical Review D</i> , 2002 , 66,	4.9	45
14	4 6	Status of a hybrid three-neutrino interpretation of neutrino data. <i>Nuclear Physics B</i> , 2002 , 629, 479-490	2.8	63
12	15	Ruling out four-neutrino oscillation interpretations of the LSND anomaly?. <i>Nuclear Physics B</i> , 2002 , 643, 321-338	2.8	104
14	14	Minimalistic neutrino mass model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2001 , 501, 115-127	4.2	32
14	43	Cornering (3+1) sterile neutrino schemes. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2001 , 518, 252-260	4.2	43

142	A non-resonant dark-side solution to the solar neutrino problem. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2001 , 521, 299-307	4.2	33
141	Non-standard interactions: atmospheric versus neutrino factory experiments. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2001 , 523, 151-160	4.2	73
140	Solar neutrino problem accounting for self-consistent magnetohydrodynamics solution for solar magnetic fields. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2001 , 95, 123-129		3
139	Large lepton mixing and supernova 1987A. <i>Journal of High Energy Physics</i> , 2001 , 2001, 030-030	5.4	22
138	Probing neutrino nonstandard interactions with atmospheric neutrino data. <i>Physical Review D</i> , 2001 , 65,	4.9	120
137	Testing neutrino mixing at future collider experiments. <i>Physical Review D</i> , 2001 , 63,	4.9	100
136	Neutrino unification. <i>Physical Review Letters</i> , 2001 , 86, 3488-91	7.4	52
135	Light sterile neutrino from extra dimensions and four-neutrino solutions to neutrino anomalies. <i>Physical Review D</i> , 2001 , 63,	4.9	31
134	The simplest resonant spin-flavour solution to the solar neutrino problem. <i>Nuclear Physics B</i> , 2001 , 595, 360-380	2.8	62
133	Neutralino phenomenology at LEP2 in supersymmetry with bilinear breaking of R-parity. <i>Nuclear Physics B</i> , 2001 , 600, 39-61	2.8	15
132	Bilinear R-parity violating SUSY: neutrinoless double beta decay in the light of solar and atmospheric neutrino data. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 486, 255-262	4.2	13
131	Bilinear R-parity violation and small neutrino masses: a self-consistent framework. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2000 , 492, 81-90	4.2	51
130	Effective description of quark mixing. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 492, 98-106	4.2	95
129	Reconciling neutrino anomalies in a simple four-neutrino scheme with R-parity violation. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 495, 121-130	4.2	17
128	A potential test of the CP properties and Majorana nature of neutrinos. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2000 , 87, 330-332		1
127	Neutrino physics at the turn of the millennium. <i>Physics of Atomic Nuclei</i> , 2000 , 63, 921-933	0.4	2
126	Updated global analysis of the atmospheric neutrino data in terms of neutrino oscillations. <i>Nuclear Physics B</i> , 2000 , 580, 58-82	2.8	81
125	Two-body decays of the lightest stop in minimal supergravity with and without R-parity. <i>Nuclear Physics B</i> , 2000 , 583, 182-210	2.8	18

(1998-2000)

124	Unification of gauge couplings and the tau-neutrino mass in supergravity without R parity. <i>Nuclear Physics B</i> , 2000 , 590, 3-18	2.8	16
123	Supersymmetry unification predictions for mtop, Vcb and tan\(\textit{Indianal}\) Nuclear Physics B, 2000 , 573, 75-86	2.8	15
122	A potential test of the CP properties and Majorana nature of neutrinos. <i>Nuclear Physics B</i> , 2000 , 566, 92-102	2.8	6
121	Status of the MSW solutions of the solar neutrino problem. <i>Nuclear Physics B</i> , 2000 , 573, 3-26	2.8	116
120	Atmospheric Neutrino Observations and Flavor Changing Interactions. <i>Physical Review Letters</i> , 1999 , 82, 3202-3205	7.4	104
119	Type-II supernovae and neutrino magnetic moments. <i>Astroparticle Physics</i> , 1999 , 11, 317-325	2.4	13
118	Borexino as a test of solar matter density fluctuations. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 70, 345-347		
117	Low-energy anti-neutrinos from the sun. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 70, 348-350		3
116	Pulsar velocities without neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 77, 440-444		
115	Gauge and Yukawa unification with broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1999 , 453, 263-268	4.2	34
114	Top-quark phenomenology in models with bilinearly and spontaneously broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1999 , 459, 615-624	4.2	19
113	Bounds on sterile neutrino mixing for cosmologically interesting mass range. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 70, 129-131		1
112	Active-active and active-sterile neutrino oscillation solutions to the atmospheric neutrino anomaly. <i>Nuclear Physics B</i> , 1999 , 543, 3-19	2.8	54
111	Testing for new physics with low-energy anti-neutrino sources: LAMA as a case study. <i>Nuclear Physics B</i> , 1999 , 546, 19-32	2.8	15
110	R-parity-violating signals for chargino production at LEP II. <i>Nuclear Physics B</i> , 1999 , 546, 33-51	2.8	16
109	Charged Higgs mass bounds from b -nstin a bilinear R-parity violating model. <i>Nuclear Physics B</i> , 1999, 551, 78-92	2.8	34
108	Neutrinoless double beta decay in supersymmetry with bilinear R-parity breaking. <i>Nuclear Physics B</i> , 1999 , 557, 60-78	2.8	45
107	Recent results on neutrino masses. <i>Progress in Particle and Nuclear Physics</i> , 1998 , 40, 43-54	10.6	1

106	An updated analysis on atmospheric neutrinos. <i>Progress in Particle and Nuclear Physics</i> , 1998 , 40, 251-25	2 10.6	2
105	Low-energy anti-neutrinos from the Sun. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1998 , 423, 118-125	4.2	15
104	Tau lepton mixing with charginos and its effects on chargino searches at e+eltolliders. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1998 , 441, 224-234	4.2	22
103	Neutrino electron scattering and electroweak gauge structure: Future tests. <i>Physical Review D</i> , 1998 , 58,	4.9	9
102	Gravitational violation of R parity and its cosmological signatures. <i>Physical Review D</i> , 1998 , 57, 147-151	4.9	21
101	Pulsar Velocities without Neutrino Mass. <i>Physical Review Letters</i> , 1998 , 81, 2412-2415	7.4	30
100	Searching for invisibly decaying Higgs bosons at CERN LEP II. <i>Physical Review D</i> , 1997 , 55, 1316-1325	4.9	32
99	Supersymmetric unification with radiative breaking of R parity. <i>Physical Review D</i> , 1997 , 55, 427-430	4.9	45
98	Supernova bounds on resonant active-sterile neutrino conversions. <i>Physical Review D</i> , 1997 , 56, 1704-17	71439	62
97	Single-photon Z decays and small neutrino masses. <i>Nuclear Physics B</i> , 1997 , 493, 56-72	2.8	2
96	Primordial nucleosynthesis, majorons and heavy tau neutrinos. <i>Nuclear Physics B</i> , 1997 , 496, 24-40	2.8	23
95	Neutrino conversions in a polarized medium. <i>Nuclear Physics B</i> , 1997 , 501, 17-40	2.8	75
94	Signatures of spontaneous breaking of R-parity in gluino cascade decays at LHC. <i>Nuclear Physics B</i> , 1997 , 502, 19-36	2.8	21
93	Neutrinos and physics beyond the standard model. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1997 , 59, 249-261		
92	The effect of random matter density perturbations on the MSW solution to the solar neutrino problem. <i>Nuclear Physics B</i> , 1996 , 472, 495-517	2.8	42
91	LEP sensitivities to spontaneous R-parity violating signals. <i>Nuclear Physics B</i> , 1996 , 482, 3-23	2.8	21
90	Supernova bounds on supersymmetric R-parity violating interactions. <i>Nuclear Physics B</i> , 1996 , 482, 481-	42.8	28
89	Neutrino properties. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1996 , 48, 137-147		3

88	Left-right symmetry breaking in NJL approach. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 368, 270-280	4.2	128
87	Bounds on neutrino transition magnetic moments in random magnetic fields. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 369, 301-307	4.2	18
86	An improved cosmological bound on the tau-neutrino mass. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 383, 193-198	4.2	15
85	New signatures for a light stop at LEP2 in SUSY models with spontaneously broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 384, 151-156	4.2	12
84	Resonant conversion of massless neutrinos in supernovae. <i>Physical Review D</i> , 1996 , 54, 4356-4363	4.9	50
83	Dynamical left-right symmetry breaking. <i>Physical Review D</i> , 1996 , 53, 2752-2780	4.9	135
82	Single photon decays of the Z0 and SUSY with spontaneously broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1995 , 351, 497-503	4.2	15
81	Reconciling cold dark matter with COBE/IRAS plus solar and atmospheric neutrino data. <i>Nuclear Physics B</i> , 1995 , 440, 647-659	2.8	16
80	Left-right symmetry and neutrino stability. <i>Nuclear Physics B</i> , 1995 , 441, 61-75	2.8	4
79	Novel scalar boson decays in SUSY with broken R-parity. <i>Nuclear Physics B</i> , 1995 , 451, 3-15	2.8	79
78	New supernova constraints on active-sterile neutrino conversions. <i>Astroparticle Physics</i> , 1995 , 3, 87-94	2.4	12
77	Limits on associated production of visibly and invisibly decaying Higgs bosons from Z decays. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1994 , 336, 446-456	4.2	13
76	SO(10) grand unification model for degenerate neutrino masses. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1994 , 332, 93-99	4.2	71
75	Update on the physics of neutrino mass. <i>Progress in Particle and Nuclear Physics</i> , 1994 , 32, 211-222	10.6	
74	Neutrino mass physics. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1994 , 35, 309-320		
73	Searching for an invisibly decaying Higgs boson in e+e∏e∏and Œollisions. <i>Nuclear Physics B</i> , 1994 , 421, 65-79	2.8	18
72	Nucleosynthesis constraints on active-sterile neutrino conversions in the early universe with random magnetic field. <i>Nuclear Physics B</i> , 1994 , 425, 651-664	2.8	35
71	The keV majoron as a dark matter particle. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 318, 360-366	4.2	96

70	Model-independent Higgs boson mass limits at LEP. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 312, 240-246	4.2	26
69	Physics at new accelerators: Looking beyond the standard model. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1993 , 31, 221-232		2
68	Massive neutrinos and electroweak baryogenesis. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 304, 147-151	4.2	21
67	Reconciling dark matter and solar neutrinos. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 298, 383-390	4.2	134
66	Spontaneous R-parity breaking at hadron supercolliders. <i>Nuclear Physics B</i> , 1993 , 391, 100-126	2.8	23
65	Reconciling dark matter, solar and atmospheric neutrinos. <i>Nuclear Physics B</i> , 1993 , 406, 409-422	2.8	205
64	Invisible Higgs decays and neutrino physics. <i>Nuclear Physics B</i> , 1993 , 397, 105-122	2.8	88
63	ENHANCED LEPTON FLAVOR VIOLATION WITH MASSLESS NEUTRINOS: A STUDY OF MUON AND TAU DECAYS. <i>Modern Physics Letters A</i> , 1992 , 07, 477-488	1.3	80
62	Models with a light sterile neutrino: reconciling the 17 keV anomaly with the solar neutrino deficit. <i>Nuclear Physics B</i> , 1992 , 375, 649-664	2.8	17
61	Neutrino masses in supersymmetry with spontaneously broken R-parity. <i>Nuclear Physics B</i> , 1992 , 381, 87-108	2.8	87
60	Observable majoron emission in neutrinoless double beta decay. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1992 , 291, 99-105	4.2	70
59	How to spontaneously break R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1992 , 288, 311-320	4.2	100
58	New Higgs signatures in supersymmetry with spontaneous broken R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1992 , 292, 329-336	4.2	52
57	Radiative mechanisms for the 17 keV neutrino and the MSW mass scale. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 1992 , 286, 321-328	4.2	22
56	The 17KeV neutrino and the solar neutrino deficit. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1992 , 28, 142-147		
55	Gauge theories and the physics of neutrino mass. <i>Progress in Particle and Nuclear Physics</i> , 1991 , 26, 91-	1 <i>7:1</i> 6.6	124
54	The simplest model for the 17 keV neutrino and the MSW effect. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1991 , 264, 373-380	4.2	27
53	Neutral current and LEP constraints on an extra E6 neutral gauge boson. A global fit to electroweak parameters. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1991 , 259, 365-372	4.2	39

52	Can solar neutrino oscillation parameters be probed at LEP?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1991 , 272, 436-442	4.2	25
51	Cosmological signatures of supersymmetry with spontaneously broken R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1991 , 266, 382-388	4.2	44
50	Supersymmetric signals in muon and tau decays. <i>Nuclear Physics B</i> , 1991 , 363, 369-384	2.8	41
49	Supersymmetry with spontaneous R-parity breaking in Z0 decays: The case of an additional Z. <i>Nuclear Physics B</i> , 1991 , 355, 330-350	2.8	41
48	Gauge Theories and the Physics of Neutrino Mass 1991 , 91-171		
47	Cosmological constraints on additional light neutrinos and neutral gauge bosons. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 240, 163-169	4.2	19
46	A model for spontaneous R parity breaking. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 251, 273-278	4.2	210
45	Constraints on an additional Z? gauge boson versus the W, the top and the Higgs masses. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 236, 360-363	4.2	18
44	Leptonic CP violating asymmetries in Z0 decays. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 246, 249-255	4.2	71
43	Neutral heavy lepton signatures at the Z0 peak. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990 , 13, 195-197		5
43		0-526	5 6
	1990 , 13, 195-197	0-526 4.9	
42	1990, 13, 195-197 Lepton physics versus neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990, 13, 52 Constraints on additional Z' gauge bosons from a precise measurement of the Z mass. <i>Physical</i>		6
4 ² 4 ¹	 1990, 13, 195-197 Lepton physics versus neutrino mass. Nuclear Physics, Section B, Proceedings Supplements, 1990, 13, 52 Constraints on additional Z' gauge bosons from a precise measurement of the Z mass. Physical Review D, 1990, 41, 2355-2358 Production mechanisms and signatures of isosinglet neutral heavy leptons in Z0 decays. Nuclear 	4.9	6
4 ² 41 40	Lepton physics versus neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990 , 13, 52 Constraints on additional Z' gauge bosons from a precise measurement of the Z mass. <i>Physical Review D</i> , 1990 , 41, 2355-2358 Production mechanisms and signatures of isosinglet neutral heavy leptons in Z0 decays. <i>Nuclear Physics B</i> , 1990 , 332, 1-19	4.9 2.8	6 8 97
4 ² 4 ¹ 4 ⁰	Lepton physics versus neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990 , 13, 52 Constraints on additional Z' gauge bosons from a precise measurement of the Z mass. <i>Physical Review D</i> , 1990 , 41, 2355-2358 Production mechanisms and signatures of isosinglet neutral heavy leptons in Z0 decays. <i>Nuclear Physics B</i> , 1990 , 332, 1-19 Updated constraints on a new neutral gauge boson. <i>Nuclear Physics B</i> , 1990 , 345, 312-326 Isosinglet-neutral heavy-lepton production in Z-decays and neutrino mass. <i>Nuclear Physics B</i> , 1990 ,	2.8 2.8	6 8 97 20
42 41 40 39 38	Lepton physics versus neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990 , 13, 52 Constraints on additional Z' gauge bosons from a precise measurement of the Z mass. <i>Physical Review D</i> , 1990 , 41, 2355-2358 Production mechanisms and signatures of isosinglet neutral heavy leptons in Z0 decays. <i>Nuclear Physics B</i> , 1990 , 332, 1-19 Updated constraints on a new neutral gauge boson. <i>Nuclear Physics B</i> , 1990 , 345, 312-326 Isosinglet-neutral heavy-lepton production in Z-decays and neutrino mass. <i>Nuclear Physics B</i> , 1990 , 342, 108-126 Supersymmetry phenomenology with spontaneous R parity breaking in Z0 decays. <i>Physics Letters</i> ,	2.8 2.8 2.8	6 8 97 20 67 44

34	Fast decaying neutrinos and observable flavour violation in a new class of majoron models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1989 , 216, 360-366	4.2	264
33	Theory and implications of neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1989 , 11, 118-177		24
32	Supersymmetric majoron signatures and solar neutrino oscillations. <i>Physical Review Letters</i> , 1988 , 60, 397-400	7.4	87
31	Spontaneous R parity violation in supersymmetry: A model for solar neutrino oscillations. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 195, 423-428	4.2	127
30	Late baryogenesis in superstring models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 186, 303-308	4.2	23
29	Ultra-light neutrinos and R-parity in superstring models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 186, 73-79	4.2	15
28	Neutrino mass and new light gauge boson in superstring models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 196, 157-162	4.2	46
27	Resonant oscillations of massless neutrinos in matter. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 199, 432-436	4.2	184
26	Lepton flavour non-conservation at high energies in a superstring inspired standard model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 187, 303-308	4.2	266
25	Solar neutrino oscillations from superstrings. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1986 , 177, 47-50	4.2	47
24	Tests of neutrino stability. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1986 , 181, 369-374	4.2	52
23	Neutrino mass and baryon-number nonconservation in superstring models. <i>Physical Review D</i> , 1986 , 34, 1642-1645	4.9	753
22	Fitting Simpson's neutrino into the standard model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 159, 49-56	4.2	45
21	Phenomenology of supersymmetry with broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 150, 142-148	4.2	306
20	Baryogenesis, proton decay and fermion masses in supergravity guts. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 158, 401-408	4.2	24
19	Could Cyg X-3 muons indicate a light supersymmetric particle?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 165, 417-421	4.2	15
18	Baryogenesis in supergravity inflationary models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 160, 249-255	4.2	6
17	Supersymmetric models without R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 151, 375-381	4.2	347

LIST OF PUBLICATIONS

16	Fast invisible neutrino decays. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1984 , 142, 181-187	4.2	130
15	Majorons: A simultaneous solution to the large and small scale dark matter problems. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1984 , 146, 311-317	4.2	74
14	Leptonic CP violation and left-right symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1984 , 138, 155-158	4.2	22
13	Lepton-number violation with quasi-Dirac neutrinos. <i>Physical Review D</i> , 1983 , 28, 540-545	4.9	105
12	Neutrinoless double-Idecay with quasi-Dirac neutrinos. <i>Physical Review D</i> , 1983 , 27, 1672-1674	4.9	65
11	Fast neutrino decay in horizontal majoron models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1983 , 131, 87-90	4.2	92
10	Neutrinoless double-⊡decay in SU(2)□(1) theories. <i>Physical Review D</i> , 1982 , 25, 2951-2954	4.9	501
9	Neutrino decay and spontaneous violation of lepton number. <i>Physical Review D</i> , 1982 , 25, 774-783	4.9	666
8	Majorana neutrinos and magnetic fields. <i>Physical Review D</i> , 1981 , 24, 1883-1889	4.9	233
7	Neutrino-oscillation thought experiment. <i>Physical Review D</i> , 1981 , 23, 1666-1668	4.9	156
6	Canonical neutral-current predictions from the weak-electromagnetic gauge group SU(3) \blacksquare U(1). <i>Physical Review D</i> , 1980 , 22, 738-743	4.9	225
5	Neutrino masses in SU(2)? U(1) theories. <i>Physical Review D</i> , 1980 , 22, 2227-2235	4.9	1991
4	Comment on the lepton mixing matrix. <i>Physical Review D</i> , 1980 , 21, 309-311	4.9	59
3	Hilbert superspaces and Grassmann numbers. <i>International Journal of Theoretical Physics</i> , 1979 , 18, 923	3- <u>93</u> 4	3
2	A test for neutrino masses. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1979 , 86, 72-74	4.2	18
1			