Jos W F Valle

List of Publications by Citations

Source: https://exaly.com/author-pdf/3296486/jose-w-f-valle-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,861 71 133 393 h-index g-index citations papers 406 23,478 4.3 7.1 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
393	Neutrino masses in SU(2)? U(1) theories. <i>Physical Review D</i> , 1980 , 22, 2227-2235	4.9	1991
392	Neutrino mass and baryon-number nonconservation in superstring models. <i>Physical Review D</i> , 1986 , 34, 1642-1645	4.9	753
391	Status of global fits to neutrino oscillations. <i>New Journal of Physics</i> , 2004 , 6, 122-122	2.9	676
390	Neutrino decay and spontaneous violation of lepton number. <i>Physical Review D</i> , 1982 , 25, 774-783	4.9	666
389	Underlying A4 symmetry for the neutrino mass matrix and the quark mixing matrix. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2003 , 552, 207-213	4.2	554
388	Neutrinoless double-decay in SU(2) (1) theories. <i>Physical Review D</i> , 1982 , 25, 2951-2954	4.9	501
387	Three-flavour neutrino oscillation update. <i>New Journal of Physics</i> , 2008 , 10, 113011	2.9	461
386	Status of neutrino oscillations 2018: 3[hint for normal mass ordering and improved CP sensitivity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 782, 633-640	4.2	372
385	Global status of neutrino oscillation parameters after Neutrino-2012. <i>Physical Review D</i> , 2012 , 86,	4.9	352
384	Supersymmetric models without R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 151, 375-381	4.2	347
383	Neutrino oscillations refitted. <i>Physical Review D</i> , 2014 , 90,	4.9	334
382	Phenomenology of supersymmetry with broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 150, 142-148	4.2	306
381	Lepton flavour non-conservation at high energies in a superstring inspired standard model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 187, 303-308	4.2	266
380	Fast decaying neutrinos and observable flavour violation in a new class of majoron models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1989 , 216, 360-366	4.2	264
379	Supersymmetric SO10 seesaw mechanism with low B-L scale. <i>Physical Review Letters</i> , 2005 , 95, 161801	7.4	242
378	Majorana neutrinos and magnetic fields. <i>Physical Review D</i> , 1981 , 24, 1883-1889	4.9	233
377	Canonical neutral-current predictions from the weak-electromagnetic gauge group SU(3) IJ(1). <i>Physical Review D</i> , 1980 , 22, 738-743	4.9	225

(1991-1990)

376	A model for spontaneous R parity breaking. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 251, 273-278	4.2	210
375	Reconciling dark matter, solar and atmospheric neutrinos. <i>Nuclear Physics B</i> , 1993 , 406, 409-422	2.8	205
374	Supersymmetry parameter analysis: SPA convention and project. <i>European Physical Journal C</i> , 2006 , 46, 43-60	4.2	203
373	Where we are on 13: addendum to Colobal neutrino data and recent reactor fluxes: status of three-flavor oscillation parameters (INew Journal of Physics, 2011, 13, 109401)	2.9	185
372	Resonant oscillations of massless neutrinos in matter. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 199, 432-436	4.2	184
371	A White Paper on keV sterile neutrino Dark Matter. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 025-025	6.4	167
370	Neutrino-oscillation thought experiment. <i>Physical Review D</i> , 1981 , 23, 1666-1668	4.9	156
369	Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters. <i>New Journal of Physics</i> , 2011 , 13, 063004	2.9	155
368	CP violation and neutrino oscillations. <i>Progress in Particle and Nuclear Physics</i> , 2008 , 60, 338-402	10.6	154
367	Physics at a future Neutrino Factory and super-beam facility. <i>Reports on Progress in Physics</i> , 2009 , 72, 106201	14.4	147
366	Dynamical left-right symmetry breaking. <i>Physical Review D</i> , 1996 , 53, 2752-2780	4.9	135
365	Reconciling dark matter and solar neutrinos. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 298, 383-390	4.2	134
364	Enhanced lepton flavor violation in the supersymmetric inverse seesaw model. <i>Physical Review D</i> , 2005 , 72,	4.9	130
363	Fast invisible neutrino decays. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1984 , 142, 181-187	4.2	130
362	Left-right symmetry breaking in NJL approach. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 368, 270-280	4.2	128
361	Spontaneous R parity violation in supersymmetry: A model for solar neutrino oscillations. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 195, 423-428	4.2	127
360	Status of three-neutrino oscillations after the SNO-salt data. <i>Physical Review D</i> , 2003 , 68,	4.9	125
359	Gauge theories and the physics of neutrino mass. <i>Progress in Particle and Nuclear Physics</i> , 1991 , 26, 91-	1 7 110.6	124

358	Probing neutrino nonstandard interactions with atmospheric neutrino data. <i>Physical Review D</i> , 2001 , 65,	4.9	120
357	Status of the MSW solutions of the solar neutrino problem. <i>Nuclear Physics B</i> , 2000 , 573, 3-26	2.8	116
356	Are solar neutrino oscillations robust?. Journal of High Energy Physics, 2006, 2006, 008-008	5.4	114
355	Lepton-number violation with quasi-Dirac neutrinos. <i>Physical Review D</i> , 1983 , 28, 540-545	4.9	105
354	Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results. <i>Physical Review D</i> , 2003 , 68,	4.9	104
353	Ruling out four-neutrino oscillation interpretations of the LSND anomaly?. <i>Nuclear Physics B</i> , 2002 , 643, 321-338	2.8	104
352	Atmospheric Neutrino Observations and Flavor Changing Interactions. <i>Physical Review Letters</i> , 1999 , 82, 3202-3205	7.4	104
351	Phenomenological tests of supersymmetric A4 family symmetry model of neutrino mass. <i>Physical Review D</i> , 2004 , 69,	4.9	102
350	Testing neutrino mixing at future collider experiments. <i>Physical Review D</i> , 2001 , 63,	4.9	100
349	How to spontaneously break R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1992 , 288, 311-320	4.2	100
348	The Hunt for New Physics at the Large Hadron Collider. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2010 , 200-202, 185-417		99
347	Production mechanisms and signatures of isosinglet neutral heavy leptons in Z0 decays. <i>Nuclear Physics B</i> , 1990 , 332, 1-19	2.8	97
346	The keV majoron as a dark matter particle. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 318, 360-366	4.2	96
345	Effective description of quark mixing. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 492, 98-106	4.2	95
344	Fast neutrino decay in horizontal majoron models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1983 , 131, 87-90	4.2	92
343	Predictive flavor symmetries of the neutrino mass matrix. <i>Physical Review Letters</i> , 2007 , 99, 151802	7.4	90
342	The Low-Scale Approach to Neutrino Masses. Advances in High Energy Physics, 2014, 2014, 1-15	1	88
341	Invisible Higgs decays and neutrino physics. <i>Nuclear Physics B</i> , 1993 , 397, 105-122	2.8	88

(1990-1992)

340	Neutrino masses in supersymmetry with spontaneously broken R-parity. <i>Nuclear Physics B</i> , 1992 , 381, 87-108	2.8	87	
339	Supersymmetric majoron signatures and solar neutrino oscillations. <i>Physical Review Letters</i> , 1988 , 60, 397-400	7.4	87	
338	Heavy neutrinos and lepton flavor violation in left-right symmetric models at the LHC. <i>Physical Review D</i> , 2012 , 86,	4.9	86	
337	Supersymmetric origin of neutrino mass. New Journal of Physics, 2004, 6, 76-76	2.9	86	
336	Decaying warm dark matter and neutrino masses. <i>Physical Review Letters</i> , 2007 , 99, 121301	7.4	83	
335	Updated global analysis of the atmospheric neutrino data in terms of neutrino oscillations. <i>Nuclear Physics B</i> , 2000 , 580, 58-82	2.8	81	
334	Enhanced Elconversion in nuclei in the inverse seesaw model. <i>Nuclear Physics B</i> , 2006 , 752, 80-92	2.8	80	
333	ENHANCED LEPTON FLAVOR VIOLATION WITH MASSLESS NEUTRINOS: A STUDY OF MUON AND TAU DECAYS. <i>Modern Physics Letters A</i> , 1992 , 07, 477-488	1.3	80	
332	Modeling quintessential inflation. Astroparticle Physics, 2002, 18, 287-306	2.4	79	
331	Novel scalar boson decays in SUSY with broken R-parity. <i>Nuclear Physics B</i> , 1995 , 451, 3-15	2.8	79	
330	Leptonic CP violation with massless neutrinos. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1989 , 225, 385-392	4.2	78	
329	Neutrino conversions in a polarized medium. <i>Nuclear Physics B</i> , 1997 , 501, 17-40	2.8	75	
328	Minimal supergravity scalar neutrino dark matter and inverse seesaw neutrino masses. <i>Physical Review Letters</i> , 2008 , 101, 161802	7.4	75	
327	Majorons: A simultaneous solution to the large and small scale dark matter problems. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1984 , 146, 311-317	4.2	74	
326	A4-based tri-bimaximal mixing within inverse and linear seesaw schemes. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2009 , 679, 454-459	4.2	73	
325	Non-standard interactions: atmospheric versus neutrino factory experiments. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2001 , 523, 151-160	4.2	73	
324	SO(10) grand unification model for degenerate neutrino masses. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1994 , 332, 93-99	4.2	71	
323	Leptonic CP violating asymmetries in Z0 decays. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 246, 249-255	4.2	71	

322	Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw. <i>Journal of High Energy Physics</i> , 2011 , 2011, 1	5.4	70
321	Constraining nonstandard interactions in Be or Dee scattering. <i>Physical Review D</i> , 2006 , 73,	4.9	70
320	Observable majoron emission in neutrinoless double beta decay. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1992 , 291, 99-105	4.2	70
319	Constraining neutrino oscillation parameters with current solar and atmospheric data. <i>Physical Review D</i> , 2003 , 67,	4.9	68
318	Probing nonstandard neutrino-electron interactions with solar and reactor neutrinos. <i>Physical Review D</i> , 2009 , 79,	4.9	67
317	Constraining nonstandard neutrino-electron interactions. <i>Physical Review D</i> , 2008 , 77,	4.9	67
316	Isosinglet-neutral heavy-lepton production in Z-decays and neutrino mass. <i>Nuclear Physics B</i> , 1990 , 342, 108-126	2.8	67
315	Volume I. Introduction to DUNE. <i>Journal of Instrumentation</i> , 2020 , 15, T08008-T08008	1	67
314	Neutrinoless double-Idecay with quasi-Dirac neutrinos. <i>Physical Review D</i> , 1983 , 27, 1672-1674	4.9	65
313	Neutrino physics overview. <i>Journal of Physics: Conference Series</i> , 2006 , 53, 473-505	0.3	64
312	Two-loop Dirac neutrino mass and WIMP dark matter. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 762, 214-218	4.2	64
311	On the description of nonunitary neutrino mixing. <i>Physical Review D</i> , 2015 , 92,	4.9	63
310	Status of a hybrid three-neutrino interpretation of neutrino data. <i>Nuclear Physics B</i> , 2002 , 629, 479-490	2.8	63
309	Supernova bounds on resonant active-sterile neutrino conversions. <i>Physical Review D</i> , 1997 , 56, 1704-17	743)	62
308	How sensitive is a neutrino factory to the angle theta(13)?. Physical Review Letters, 2002, 88, 101804	7.4	62
307	The simplest resonant spin-flavour solution to the solar neutrino problem. <i>Nuclear Physics B</i> , 2001 , 595, 360-380	2.8	62
306	Combining the first KamLAND results with solar neutrino data. <i>Physical Review D</i> , 2003 , 67,	4.9	59
305	Comment on the lepton mixing matrix. <i>Physical Review D</i> , 1980 , 21, 309-311	4.9	59

(2005-2010)

304	Discrete dark matter. <i>Physical Review D</i> , 2010 , 82,	4.9	56
303	Tribimaximal neutrino mixing and neutrinoless double beta decay. <i>Physical Review D</i> , 2008 , 78,	4.9	55
302	Constraining Majorana neutrino electromagnetic properties from the LMA-MSW solution of the solar neutrino problem. <i>Nuclear Physics B</i> , 2003 , 648, 376-396	2.8	54
301	Active-active and active-sterile neutrino oscillation solutions to the atmospheric neutrino anomaly. <i>Nuclear Physics B</i> , 1999 , 543, 3-19	2.8	54
300	Dirac neutrinos and dark matter stability from lepton quarticity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 767, 209-213	4.2	53
299	Generalized Ireflection symmetry and leptonic CP violation. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 753, 644-652	4.2	53
298	Probing nonstandard neutrino interactions with supernova neutrinos. <i>Physical Review D</i> , 2007 , 76,	4.9	53
297	Symmetrical parametrizations of the lepton mixing matrix. <i>Physical Review D</i> , 2011 , 84,	4.9	52
296	Neutrino unification. <i>Physical Review Letters</i> , 2001 , 86, 3488-91	7.4	52
295	New Higgs signatures in supersymmetry with spontaneous broken R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1992 , 292, 329-336	4.2	52
294	Tests of neutrino stability. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1986 , 181, 369-374	4.2	52
293	Bilinear R-parity violation and small neutrino masses: a self-consistent framework. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 492, 81-90	4.2	51
292	Solar-neutrino-oscillation parameters and the broken-R-parity Majoron. <i>Physical Review D</i> , 1989 , 39, 1	78 Q - 9 78	3351
291	Dirac neutrinos from flavor symmetry. <i>Physical Review D</i> , 2014 , 89,	4.9	50
290	Resonant conversion of massless neutrinos in supernovae. <i>Physical Review D</i> , 1996 , 54, 4356-4363	4.9	50
289	X-ray photons from late-decaying majoron dark matter. <i>Journal of Cosmology and Astroparticle Physics</i> , 2008 , 2008, 013	6.4	49
288	Constraining the neutrino magnetic moment with antineutrinos from the sun. <i>Physical Review Letters</i> , 2004 , 93, 051304	7.4	49
287	Predicting neutrinoless double beta decay. <i>Physical Review D</i> , 2005 , 72,	4.9	49

286	Quarklepton mass relation in a realistic A4 extension of the Standard Model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2013 , 724, 68-72	4.2	48
285	Constraining nonstandard neutrino-quark interactions with solar, reactor, and accelerator data. <i>Physical Review D</i> , 2009 , 80,	4.9	48
284	Predicting charged lepton flavor violation from 3-3-1 gauge symmetry. <i>Physical Review D</i> , 2015 , 92,	4.9	47
283	Solar neutrino oscillations from superstrings. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1986 , 177, 47-50	4.2	47
282	Seesaw roadmap to neutrino mass and dark matter. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 781, 122-128	4.2	46
281	Neutrino mass and new light gauge boson in superstring models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 196, 157-162	4.2	46
280	Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study. <i>New Journal of Physics</i> , 2017 , 19, 093005	2.9	45
279	Neutrino masses and mixing: a flavour symmetry roadmap. Fortschritte Der Physik, 2013, 61, 466-492	5.7	45
278	Quark-lepton mass relation and CKM mixing in an A4 extension of the minimal supersymmetric standard model. <i>Physical Review D</i> , 2013 , 88,	4.9	45
277	Supersymmetric unification with radiative breaking of R parity. <i>Physical Review D</i> , 1997 , 55, 427-430	4.9	45
276	Confronting spin flavor solutions of the solar neutrino problem with current and future solar neutrino data. <i>Physical Review D</i> , 2002 , 66,	4.9	45
275	Neutrinoless double beta decay in supersymmetry with bilinear R-parity breaking. <i>Nuclear Physics B</i> , 1999 , 557, 60-78	2.8	45
274	Fitting Simpson's neutrino into the standard model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 159, 49-56	4.2	45
273	Supersymmetry phenomenology with spontaneous R parity breaking in Z0 decays. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 251, 142-149	4.2	44
272	Cosmological signatures of supersymmetry with spontaneously broken R parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1991 , 266, 382-388	4.2	44
271	Constraining neutrinoless double beta decay. <i>Nuclear Physics B</i> , 2012 , 861, 259-270	2.8	43
270	Probing bilinear R-parity violating supergravity at the LHC. <i>Journal of High Energy Physics</i> , 2008 , 2008, 048-048	5.4	43
269	Cornering (3+1) sterile neutrino schemes. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2001 , 518, 252-260	4.2	43

268	Updated CMB and x- and Fray constraints on Majoron dark matter. <i>Physical Review D</i> , 2013 , 88,	4.9	42	
267	Phenomenology of dark matter from A 4 flavor symmetry. <i>Journal of High Energy Physics</i> , 2011 , 2011, 1	5.4	42	
266	A simple analytic three-flavour description of the day-night effect in the solar neutrino flux. <i>Journal of High Energy Physics</i> , 2004 , 2004, 057-057	5.4	42	
265	The effect of random matter density perturbations on the MSW solution to the solar neutrino problem. <i>Nuclear Physics B</i> , 1996 , 472, 495-517	2.8	42	
264	Supersymmetric signals in muon and tau decays. <i>Nuclear Physics B</i> , 1991 , 363, 369-384	2.8	41	
263	Supersymmetry with spontaneous R-parity breaking in Z0 decays: The case of an additional Z. <i>Nuclear Physics B</i> , 1991 , 355, 330-350	2.8	41	
262	Large Mixing Angle Oscillations as a Probe of the Deep Solar Interior. <i>Astrophysical Journal</i> , 2003 , 588, L65-L68	4.7	39	
261	Neutral current and LEP constraints on an extra E6 neutral gauge boson. A global fit to electroweak parameters. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1991 , 259, 365-372	4.2	39	
260	Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments. <i>Physical Review D</i> , 2017 , 96,	4.9	38	
259	Collider aspects of flavor physics at high Q. European Physical Journal C, 2008, 57, 183-307	4.2	38	
258	Radiative neutrino mass in 3-3-1 scheme. <i>Physical Review D</i> , 2014 , 90,	4.9	37	
257	New Ambiguity in Probing CP Violation in Neutrino Oscillations. <i>Physical Review Letters</i> , 2016 , 117, 061	8 9 .4	37	
256	WIMP dark matter as radiative neutrino mass messenger. <i>Journal of High Energy Physics</i> , 2013 , 2013, 1	5.4	36	
255	Probing neutrino properties with charged scalar lepton decays. <i>Physical Review D</i> , 2002 , 66,	4.9	36	
254	Warped flavor symmetry predictions for neutrino physics. <i>Journal of High Energy Physics</i> , 2016 , 2016, 1	5.4	35	
253	Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering. Journal of High Energy Physics, 2019 , 2019, 1	5.4	35	
252	Global constraints on muon-neutrino nonstandard interactions. Physical Review D, 2011, 83,	4.9	35	
251	Nucleosynthesis constraints on active-sterile neutrino conversions in the early universe with random magnetic field. <i>Nuclear Physics B</i> , 1994 , 425, 651-664	2.8	35	

250	Generalized bottom-tau unification, neutrino oscillations and dark matter: Predictions from a lepton quarticity flavor approach. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 773, 26-33	4.2	34
249	Consistency of the triplet seesaw model revisited. <i>Physical Review D</i> , 2015 , 92,	4.9	34
248	Probing neutrino magnetic moments at the Spallation Neutron Source facility. <i>Physical Review D</i> , 2015 , 92,	4.9	34
247	Minimal supergravity radiative effects on the tribimaximal neutrino mixing pattern. <i>Physical Review D</i> , 2007 , 75,	4.9	34
246	Gauge and Yukawa unification with broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1999 , 453, 263-268	4.2	34
245	Charged Higgs mass bounds from b -nstin a bilinear R-parity violating model. <i>Nuclear Physics B</i> , 1999 , 551, 78-92	2.8	34
244	Is charged lepton flavor violation a high energy phenomenon?. Physical Review D, 2014, 89,	4.9	33
243	Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity. <i>Journal of High Energy Physics</i> , 2009 , 2009, 003-003	5.4	33
242	Inverse tribimaximal type-III seesaw mechanism and lepton flavor violation. <i>Physical Review D</i> , 2009 , 80,	4.9	33
241	Confusing nonzero 113 with nonstandard interactions in the solar neutrino sector. <i>Physical Review D</i> , 2009 , 80,	4.9	33
240	Enhanced solar antineutrino flux in random magnetic fields. <i>Physical Review D</i> , 2004 , 70,	4.9	33
239	A non-resonant dark-side solution to the solar neutrino problem. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2001 , 521, 299-307	4.2	33
238	Matter-parity as a residual gauge symmetry: Probing a theory of cosmological dark matter. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 772, 825-831	4.2	32
237	Searching for invisibly decaying Higgs bosons at CERN LEP II. <i>Physical Review D</i> , 1997 , 55, 1316-1325	4.9	32
236	Minimalistic neutrino mass model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2001 , 501, 115-127	4.2	32
235	Dynamical seesaw mechanism for Dirac neutrinos. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 755, 363-366	4.2	32
234	Probing minimal supergravity in the type-I seesaw mechanism with lepton flavor violation at the CERN LHC. <i>Physical Review D</i> , 2008 , 78,	4.9	31
233	Resonant origin for density fluctuations deep within the Sun: helioseismology and magneto-gravity waves. <i>Monthly Notices of the Royal Astronomical Society</i> , 2004 , 348, 609-624	4.3	31

232	Light sterile neutrino from extra dimensions and four-neutrino solutions to neutrino anomalies. <i>Physical Review D</i> , 2001 , 63,	4.9	31	
231	Constraining flavor changing interactions from LHC Run-2 dilepton bounds with vector mediators. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 763, 269-274	4.2	31	
230	Relating quarks and leptons with the T 7 flavour group. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 742, 99-106	4.2	30	
229	Pulsar Velocities without Neutrino Mass. <i>Physical Review Letters</i> , 1998 , 81, 2412-2415	7.4	30	
228	Realistic SU(3)c?SU(3)L?U(1)X model with a type II Dirac neutrino seesaw mechanism. <i>Physical Review D</i> , 2016 , 94,	4.9	30	
227	Updating neutrino magnetic moment constraints. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 753, 191-198	4.2	29	
226	Flavor in heavy neutrino searches at the LHC. <i>Physical Review D</i> , 2012 , 85,	4.9	29	
225	Can OPERA help in constraining neutrino non-standard interactions?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2008 , 668, 197-201	4.2	29	
224	Probing supernova physics with neutrino oscillations. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2002 , 542, 239-244	4.2	29	
223	Publisher Note: Predicting neutrinoless double beta decay [Phys. Rev. D 72, 091301 (2005)]. <i>Physical Review D</i> , 2005 , 72,	4.9	29	
222	First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. <i>Journal of Instrumentation</i> , 2020 , 15, P12004-P12004	1	29	
221	Volume IV. The DUNE far detector single-phase technology. <i>Journal of Instrumentation</i> , 2020 , 15, T080	1 0 -T08	019	
220	Small neutrino masses and gauge coupling unification. <i>Physical Review D</i> , 2015 , 91,	4.9	28	
219	Supernova bounds on supersymmetric R-parity violating interactions. <i>Nuclear Physics B</i> , 1996 , 482, 481	-4 <u>9</u> .8	28	
218	The simplest model for the 17 keV neutrino and the MSW effect. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1991 , 264, 373-380	4.2	27	
217	Naturally light neutrinos in Diracon model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 762, 162-165	4.2	27	
216	Are the B decay anomalies related to neutrino oscillations?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 750, 367-371	4.2	26	
215	Lepton asymmetries and primordial hypermagnetic helicity evolution. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 008-008	6.4	26	

214	Model-independent Higgs boson mass limits at LEP. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 312, 240-246	4.2	26
213	Is the baryon asymmetry of the Universe related to galactic magnetic fields?. <i>Physical Review D</i> , 2009 , 80,	4.9	25
212	Testing the mechanism of R-parity breaking with slepton LSP decays. <i>Journal of High Energy Physics</i> , 2003 , 2003, 005-005	5.4	25
211	Can solar neutrino oscillation parameters be probed at LEP?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 1991 , 272, 436-442	4.2	25
2 10	Classifying CP transformations according to their texture zeros: Theory and implications. <i>Physical Review D</i> , 2016 , 94,	4.9	24
209	Inflation and majoron dark matter in the neutrino seesaw mechanism. <i>Physical Review D</i> , 2014 , 90,	4.9	24
208	Gravitino dark matter and neutrino masses with bilinear R-parity violation. <i>Physical Review D</i> , 2012 , 85,	4.9	24
207	New neutrino mass sum rule from the inverse seesaw mechanism. <i>Physical Review D</i> , 2012 , 86,	4.9	24
206	Theory and implications of neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1989 , 11, 118-177		24
205	Baryogenesis, proton decay and fermion masses in supergravity guts. <i>Physics Letters, Section B:</i> Nuclear, Elementary Particle and High-Energy Physics, 1985 , 158, 401-408	4.2	24
204	CP violation from flavor symmetry in a lepton quarticity dark matter model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 761, 431-436	4.2	24
203	U(1)B3BL2 gauge symmetry as a simple description of b-manomalies. <i>Physical Review D</i> , 2018 , 98,	4.9	24
202	Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing. <i>Physical Review D</i> , 2017 , 95,	4.9	23
201	Neutrino mass and invisible Higgs decays at the LHC. <i>Physical Review D</i> , 2015 , 91,	4.9	23
200	Calculable inverse-seesaw neutrino masses in supersymmetry. <i>Physical Review D</i> , 2010 , 81,	4.9	23
199	Neutrino masses, leptogenesis, and dark matter in a hybrid seesaw model. <i>Physical Review D</i> , 2009 , 79,	4.9	23
198	Relating quarks and leptons without grand unification. <i>Physical Review D</i> , 2011 , 84,	4.9	23
197	Bilarge neutrino mixing and the Cabibbo angle. <i>Physical Review D</i> , 2012 , 86,	4.9	23

196	Primordial nucleosynthesis, majorons and heavy tau neutrinos. <i>Nuclear Physics B</i> , 1997 , 496, 24-40	2.8	23
195	Exact relativistic Edecay endpoint spectrum. <i>Physical Review C</i> , 2007 , 76,	2.7	23
194	Cornering solar radiative-zone fluctuations with KamLAND and SNO salt. <i>Journal of Cosmology and Astroparticle Physics</i> , 2004 , 2004, 007-007	6.4	23
193	Spontaneous R-parity breaking at hadron supercolliders. <i>Nuclear Physics B</i> , 1993 , 391, 100-126	2.8	23
192	Late baryogenesis in superstring models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 186, 303-308	4.2	23
191	Neutrino oscillations and the seesaw origin of neutrino mass. <i>Nuclear Physics B</i> , 2016 , 908, 436-455	2.8	23
190	Modelling tribimaximal neutrino mixing. <i>Physical Review D</i> , 2009 , 79,	4.9	22
189	Tau lepton mixing with charginos and its effects on chargino searches at e+eltolliders. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1998 , 441, 224-234	4.2	22
188	Large lepton mixing and supernova 1987A. Journal of High Energy Physics, 2001, 2001, 030-030	5.4	22
187	Radiative mechanisms for the 17 keV neutrino and the MSW mass scale. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1992 , 286, 321-328	4.2	22
186	Leptonic CP violation and left-right symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1984 , 138, 155-158	4.2	22
185	Bound-state dark matter and Dirac neutrino masses. <i>Physical Review D</i> , 2018 , 97,	4.9	22
184	Seesaw Dirac neutrino mass through dimension-six operators. <i>Physical Review D</i> , 2018 , 98,	4.9	21
183	Predictive Pati-Salam theory of fermion masses and mixing. <i>Journal of High Energy Physics</i> , 2017 , 2017, 1	5.4	21
182	A4-based neutrino masses with Majoron decaying dark matter. <i>Physical Review D</i> , 2010 , 82,	4.9	21
181	Signatures of spontaneous breaking of R-parity in gluino cascade decays at LHC. <i>Nuclear Physics B</i> , 1997 , 502, 19-36	2.8	21
180	Parameter degeneracy in flavor-dependent reconstruction of supernova neutrino fluxes. <i>Journal of Cosmology and Astroparticle Physics</i> , 2008 , 2008, 006	6.4	21
179	Gravitational violation of R parity and its cosmological signatures. <i>Physical Review D</i> , 1998 , 57, 147-151	4.9	21

178	LEP sensitivities to spontaneous R-parity violating signals. <i>Nuclear Physics B</i> , 1996 , 482, 3-23	2.8	21
177	Massive neutrinos and electroweak baryogenesis. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 304, 147-151	4.2	21
176	XENON1T signal from transition neutrino magnetic moments. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 808, 135685	4.2	21
175	Consistency of WIMP Dark Matter as radiative neutrino mass messenger. <i>Journal of High Energy Physics</i> , 2016 , 2016, 1	5.4	21
174	String completion of an SU(3)c? SU(3)L? U(1)X electroweak model. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2016 , 759, 471-478	4.2	21
173	Flavour-symmetric type-II Dirac neutrino seesaw mechanism. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 779, 257-261	4.2	20
172	Can one ever prove that neutrinos are Dirac particles?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 781, 302-305	4.2	20
171	Probing the internal solar magnetic field through g modes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 453-458	4.3	20
170	Probing neutrino mass with displaced vertices at the Fermilab Tevatron. <i>Physical Review D</i> , 2005 , 71,	4.9	20
169	Invisible Higgs boson decays in spontaneously broken R parity. <i>Physical Review D</i> , 2004 , 70,	4.9	20
168	Updated constraints on a new neutral gauge boson. <i>Nuclear Physics B</i> , 1990 , 345, 312-326	2.8	20
167	R parity violation assisted thermal leptogenesis in the seesaw mechanism. <i>Physical Review Letters</i> , 2006 , 96, 011601	7.4	19
166	Top-quark phenomenology in models with bilinearly and spontaneously broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1999 , 459, 615-624	4.2	19
165	Cosmological constraints on additional light neutrinos and neutral gauge bosons. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 1990 , 240, 163-169	4.2	19
164	The dark side of flipped trinification. <i>Journal of High Energy Physics</i> , 2018 , 2018, 1	5.4	18
163	Predictive discrete dark matter model and neutrino oscillations. <i>Physical Review D</i> , 2012 , 86,	4.9	18
162	Neutrino mixing with revamped A4 flavor symmetry. <i>Physical Review D</i> , 2013 , 88,	4.9	18
161	Two-body decays of the lightest stop in minimal supergravity with and without R-parity. <i>Nuclear Physics B</i> , 2000 , 583, 182-210	2.8	18

(2008-1996)

160	Bounds on neutrino transition magnetic moments in random magnetic fields. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 369, 301-307	4.2	18	
159	Searching for an invisibly decaying Higgs boson in e+e∏e∏and Œollisions. <i>Nuclear Physics B</i> , 1994 , 421, 65-79	2.8	18	
158	Constraints on an additional Z? gauge boson versus the W, the top and the Higgs masses. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1990 , 236, 360-363	4.2	18	
157	A test for neutrino masses. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1979 , 86, 72-74	4.2	18	
156	Zooming in on neutrino oscillations with DUNE. <i>Physical Review D</i> , 2018 , 97,	4.9	18	
155	Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with liquid Argon. <i>Journal of High Energy Physics</i> , 2020 , 2020, 1	5.4	17	
154	Vacuum stability with spontaneous violation of lepton number. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 756, 345-349	4.2	17	
153	Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 771, 524-531	4.2	17	
152	Towards gauge coupling unification in left-right symmetric SU(3)cBU(3)LBU(3)RU(1)X theories. <i>Physical Review D</i> , 2017 , 96,	4.9	17	
151	Sensitivities to neutrino electromagnetic properties at the TEXONO experiment. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2015 , 750, 459-465	4.2	17	
150	Chern-Simons anomaly as polarization effect. <i>Journal of Cosmology and Astroparticle Physics</i> , 2011 , 2011, 048-048	6.4	17	
149	Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino mass model. <i>Physical Review D</i> , 2003 , 68,	4.9	17	
148	Reconciling neutrino anomalies in a simple four-neutrino scheme with R-parity violation. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 495, 121-130	4.2	17	
147	Models with a light sterile neutrino: reconciling the 17 keV anomaly with the solar neutrino deficit. <i>Nuclear Physics B</i> , 1992 , 375, 649-664	2.8	17	
146	331 models and grand unification: From minimal SU(5) to minimal SU(6). <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2016 , 762, 432-440	4.2	17	
145	Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2018 , 778, 459-463	4.2	16	
144	A model of comprehensive unification. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 774, 667-670	4.2	16	
143	Lepton asymmetries and the growth of cosmological seed magnetic fields. <i>Journal of High Energy Physics</i> , 2008 , 2008, 067-067	5.4	16	

142	Production and decays of supersymmetric Higgs bosons in spontaneously broken R parity. <i>Physical Review D</i> , 2006 , 73,	4.9	16
141	Unification of gauge couplings and the tau-neutrino mass in supergravity without R parity. <i>Nuclear Physics B</i> , 2000 , 590, 3-18	2.8	16
140	R-parity-violating signals for chargino production at LEP II. <i>Nuclear Physics B</i> , 1999 , 546, 33-51	2.8	16
139	Reconciling cold dark matter with COBE/IRAS plus solar and atmospheric neutrino data. <i>Nuclear Physics B</i> , 1995 , 440, 647-659	2.8	16
138	Unifying leftfight symmetry and 331 electroweak theories. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 766, 35-40	4.2	15
137	Simplest scoto-seesaw mechanism. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 789, 132-136	4.2	15
136	Leptogenesis with a dynamical seesaw scale. <i>Journal of Cosmology and Astroparticle Physics</i> , 2014 , 2014, 052-052	6.4	15
135	Low-energy anti-neutrinos from the Sun. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1998 , 423, 118-125	4.2	15
134	Supersymmetry unification predictions for mtop, Vcb and tan [INuclear Physics B, 2000, 573, 75-86]	2.8	15
133	Neutralino phenomenology at LEP2 in supersymmetry with bilinear breaking of R-parity. <i>Nuclear Physics B</i> , 2001 , 600, 39-61	2.8	15
132	Testing for new physics with low-energy anti-neutrino sources: LAMA as a case study. <i>Nuclear Physics B</i> , 1999 , 546, 19-32	2.8	15
131	Single photon decays of the Z0 and SUSY with spontaneously broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1995 , 351, 497-503	4.2	15
130	An improved cosmological bound on the tau-neutrino mass. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 383, 193-198	4.2	15
129	Ultra-light neutrinos and R-parity in superstring models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1987 , 186, 73-79	4.2	15
128	Could Cyg X-3 muons indicate a light supersymmetric particle?. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 165, 417-421	4.2	15
127	Neutrino predictions from a left-right symmetric flavored extension of the standard model. <i>Journal of High Energy Physics</i> , 2019 , 2019, 1	5.4	15
126	Asymmetric dark matter, inflation, and leptogenesis from BII symmetry breaking. <i>Physical Review D</i> , 2019 , 99,	4.9	14
125	Low-energy neutrino-electron scattering as a standard model probe: The potential of LENA as case study. <i>Physical Review D</i> , 2012 , 85,	4.9	14

(2018-2010)

124	Interplay between collective effects and nonstandard interactions of supernova neutrinos. <i>Physical Review D</i> , 2010 , 81,	4.9	14
123	Electroweak breaking and neutrino mass: Invisible Higgs decays at the LHC (type II seesaw). <i>New Journal of Physics</i> , 2016 , 18, 033033	2.9	14
122	Phenomenology of scotogenic scalar dark matter. European Physical Journal C, 2020, 80, 1	4.2	13
121	Cornering the revamped BMV model with neutrino oscillation data. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 774, 179-182	4.2	13
120	Bilarge neutrino mixing and Abelian flavor symmetry. <i>Physical Review D</i> , 2013 , 87,	4.9	13
119	Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider. <i>Physical Review D</i> , 2010 , 82,	4.9	13
118	Global analysis of neutrino oscillation data in four-neutrino schemes. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 114, 203-207		13
117	Bilinear R-parity violating SUSY: neutrinoless double beta decay in the light of solar and atmospheric neutrino data. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2000 , 486, 255-262	4.2	13
116	Type-II supernovae and neutrino magnetic moments. Astroparticle Physics, 1999, 11, 317-325	2.4	13
115	Limits on associated production of visibly and invisibly decaying Higgs bosons from Z decays. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1994 , 336, 446-456	4.2	13
114	Probing new neutral gauge bosons with CENS and neutrino-electron scattering. <i>Physical Review D</i> , 2020 , 101,	4.9	12
113	Neutrino predictions from generalized CP symmetries of charged leptons. <i>Journal of High Energy Physics</i> , 2018 , 2018, 1	5.4	12
112	Accidental stability of dark matter. Journal of High Energy Physics, 2013, 2013, 1	5.4	12
111	Radiative zone solar magnetic fields and g modes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 845-850	4.3	12
110	New signatures for a light stop at LEP2 in SUSY models with spontaneously broken R-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1996 , 384, 151-156	4.2	12
109	New supernova constraints on active-sterile neutrino conversions. <i>Astroparticle Physics</i> , 1995 , 3, 87-94	2.4	12
108	Realistic tribimaximal neutrino mixing. <i>Physical Review D</i> , 2018 , 98,	4.9	12
107	SO(3) family symmetry and axions. <i>Physical Review D</i> , 2018 , 98,	4.9	12

106	Bound-state dark matter with Majorana neutrinos. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 790, 303-307	4.2	11
105	Flavor physics scenario for the 750 GeV diphoton anomaly. <i>Physical Review D</i> , 2016 , 93,	4.9	11
104	Addendum to Opdating neutrino magnetic moment constraints (Phys. Lett. B 753 (2016) 191 (1918). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 568	4.2	11
103	Thermal leptogenesis in extended supersymmetric seesaw model. <i>Physical Review D</i> , 2007 , 75,	4.9	11
102	Probing neutrino mass with multilepton production at the Tevatron in the simplestR-parity violation model. <i>Journal of High Energy Physics</i> , 2003 , 2003, 071-071	5.4	11
101	Decaying warm dark matter and structure formation. <i>Journal of Cosmology and Astroparticle Physics</i> , 2018 , 2018, 026-026	6.4	11
100	Scotogenic dark matter stability from gauged matter parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 798, 135013	4.2	10
99	Simple theory for scotogenic dark matter with residual matter-parity. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 809, 135757	4.2	10
98	Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model. Journal of High Energy Physics, 2017 , 2017, 1	5.4	10
97	Probing neutralino properties in minimal supergravity with bilinear R-parity violation. <i>Physical Review D</i> , 2012 , 86,	4.9	10
96	Exploring the potential of short-baseline physics at Fermilab. <i>Physical Review D</i> , 2018 , 97,	4.9	10
95	A theory for scotogenic dark matter stabilised by residual gauge symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 802, 135254	4.2	9
94	The Cabibbo angle as a universal seed for quark and lepton mixings. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2015, 748, 1-4	4.2	9
93	Three-family left-right symmetry with low-scale seesaw mechanism. <i>Journal of High Energy Physics</i> , 2017 , 2017, 1	5.4	9
92	Geotomography with solar and supernova neutrinos. <i>Journal of High Energy Physics</i> , 2005 , 2005, 053-05	3 5.4	9
91	Neutrino electron scattering and electroweak gauge structure: Future tests. <i>Physical Review D</i> , 1998 , 58,	4.9	9
90	Neutrino oscillations from warped flavor symmetry: Predictions for long baseline experiments T2K, NOvA, and DUNE. <i>Physical Review D</i> , 2017 , 95,	4.9	9
89	The weak mixing angle from low energy neutrino measurements: A global update. <i>Physics Letters,</i> Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016 , 761, 450-455	4.2	9

(2019-2020)

88	Predictions from warped flavor dynamics based on the T? family group. <i>Physical Review D</i> , 2020 , 102,	4.9	8
87	Volume III. DUNE far detector technical coordination. <i>Journal of Instrumentation</i> , 2020 , 15, T08009-T080	0@9	8
86	Flavour and CP predictions from orbifold compactification. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 801, 135195	4.2	8
85	Testing generalized CP symmetries with precision studies at DUNE. <i>Physical Review D</i> , 2019 , 99,	4.9	8
84	Light majoron cold dark matter from topological defects and the formation of boson stars. <i>Journal of Cosmology and Astroparticle Physics</i> , 2019 , 2019, 029-029	6.4	8
83	Standard and non-standard neutrino oscillations. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2003 , 29, 1819-1831	2.9	8
82	Constraints on additional Z' gauge bosons from a precise measurement of the Z mass. <i>Physical Review D</i> , 1990 , 41, 2355-2358	4.9	8
81	Bilinear R-parity violation with flavor symmetry. Journal of High Energy Physics, 2013, 2013, 1	5.4	7
80	Spontaneous Breaking of Lepton Number and the Cosmological Domain Wall Problem. <i>Physical Review Letters</i> , 2019 , 122, 151301	7.4	6
79	Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory. <i>Physical Review D</i> , 2020 , 102,	4.9	6
78	Scotogenic dark matter and Dirac neutrinos from unbroken gauged B L symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,</i> 2020 , 807, 135537	4.2	6
77	Resolving the atmospheric octant by an improved measurement of the reactor angle. <i>Physical Review D</i> , 2017 , 96,	4.9	6
76	A potential test of the CP properties and Majorana nature of neutrinos. <i>Nuclear Physics B</i> , 2000 , 566, 92-102	2.8	6
75	Lepton physics versus neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990 , 13, 520	-526	6
74	Baryogenesis in supergravity inflationary models. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1985 , 160, 249-255	4.2	6
73	Status and prospects of B i-largelleptonic mixing. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 796, 162-167	4.2	5
72	Predicting neutrino oscillations with Bi-largellepton mixing matrices. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2019 , 792, 461-464	4.2	5
71	CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I. <i>Journal of High Energy Physics</i> , 2019 , 2019, 1	5.4	5

70	CP symmetries as guiding posts: Revamping tribimaximal mixing. II Physical Review D, 2019, 100,	4.9	5
69	Neutral heavy lepton signatures at the Z0 peak. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1990 , 13, 195-197		5
68	Gravitational footprints of massive neutrinos and lepton number breaking. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 807, 135577	4.2	5
67	Consistency of the dynamical high-scale type-I seesaw mechanism. <i>Physical Review D</i> , 2020 , 101,	4.9	5
66	Probing the predictions of an orbifold theory of flavor. <i>Physical Review D</i> , 2020 , 101,	4.9	4
65	Finding the Higgs boson through supersymmetry. <i>Physical Review D</i> , 2009 , 80,	4.9	4
64	Fermion masses, leptogenesis, and supersymmetric SO(10) unification. <i>Physical Review D</i> , 2008 , 77,	4.9	4
63	Left-right symmetry and neutrino stability. <i>Nuclear Physics B</i> , 1995 , 441, 61-75	2.8	4
62	Dirac neutrinos from Peccei\(\mathbb{Q}\)uinn symmetry: A fresh look at the axion. <i>Modern Physics Letters A</i> , 2020 , 35, 2050176	1.3	4
61	Constraints on majoron dark matter from cosmic microwave background and astrophysical observations. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2014 , 742, 154-157	1.2	3
60	Planck-scale effects on WIMP dark matter. Frontiers in Physics, 2014, 1,	3.9	3
59	Progress in the understanding of neutrino properties. <i>Journal of Physics: Conference Series</i> , 2010 , 203, 012009	0.3	3
58	Concluding talk at NOW 2006. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2007 , 168, 413-422		3
57	Neutrino Oscillations and New Physics. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 145, 141-147		3
56	Physics of Massive Neutrinos. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 149, 3-12		3
55	Neutrino masses and oscillations. AIP Conference Proceedings, 2005,	0	3
54	Charge Breaking Minima in the Broken R-parity Minimal Supersymmetric Standard Model. <i>Journal of High Energy Physics</i> , 2005 , 2005, 020-020	5.4	3
53	Solar neutrino problem accounting for self-consistent magnetohydrodynamics solution for solar magnetic fields. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2001 , 95, 123-129		3

(2021-1999)

52	Low-energy anti-neutrinos from the sun. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 70, 348-350		3
51	Neutrino properties. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1996 , 48, 137-147		3
50	Hilbert superspaces and Grassmann numbers. International Journal of Theoretical Physics, 1979, 18, 923	-934	3
49	Phenomenology of fermion dark matter as neutrino mass mediator with gauged B-L. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2021 , 817, 136292	4.2	3
48	Electroweak breaking and Higgs boson profile in the simplest linear seesaw model. <i>Journal of High Energy Physics</i> , 2019 , 2019, 1	5.4	3
47	The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2021 , 819, 136458	4.2	3
46	Understanding and Probing Neutrinos. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2012 , 229-232, 23-29		2
45	Neutrinos and dark matter. <i>Journal of Physics: Conference Series</i> , 2012 , 384, 012022	0.3	2
44	Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data. <i>Journal of Physics: Conference Series</i> , 2010 , 259, 012091	0.3	2
43	Single-photon Z decays and small neutrino masses. <i>Nuclear Physics B</i> , 1997 , 493, 56-72	2.8	2
42	An updated analysis on atmospheric neutrinos. <i>Progress in Particle and Nuclear Physics</i> , 1998 , 40, 251-25	52 10.6	2
41	Neutrinos in astroparticle physics. AIP Conference Proceedings, 2006,	О	2
40	Neutrino physics at the turn of the millennium. <i>Physics of Atomic Nuclei</i> , 2000 , 63, 921-933	0.4	2
39	Physics at new accelerators: Looking beyond the standard model. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1993 , 31, 221-232		2
38	Cornering (quasi) degenerate neutrinos with cosmology. Journal of High Energy Physics, 2020, 2020, 1	5.4	2
37	Electroweak symmetry breaking in the inverse seesaw mechanism. <i>Journal of High Energy Physics</i> , 2021 , 2021, 1	5.4	2
36	Inverse seesaw mechanism with compact supersymmetry: Enhanced naturalness and light superpartners. <i>Physical Review D</i> , 2018 , 98,	4.9	2

34	Status and implications of neutrino masses: A brief panorama. <i>International Journal of Modern Physics A</i> , 2015 , 30, 1530034	1.2	1
33	Neutrino mass in supersymmetry 2010 ,		1
32	Neutrinos as cosmic messengers 2009 ,		1
31	Recent results on neutrino masses. <i>Progress in Particle and Nuclear Physics</i> , 1998 , 40, 43-54	10.6	1
30	Probing a supersymmetric model for neutrino masses at ultrahigh energy neutrino telescopes. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2008 , 662, 185-189	4.2	1
29	MHD origin of density fluctuations deep within the Sun and their influence on neutrino oscillation parameters in LMA MSW scenario. <i>Physics of Atomic Nuclei</i> , 2004 , 67, 1147-1150	0.4	1
28	A potential test of the CP properties and Majorana nature of neutrinos. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2000 , 87, 330-332		1
27	Bounds on sterile neutrino mixing for cosmologically interesting mass range. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 70, 129-131		1
26	Trimaximal neutrino mixing from scotogenic A4 family symmetry. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2021 , 815, 136122	4.2	1
25	Constraining right-handed neutrinos. <i>Nuclear and Particle Physics Proceedings</i> , 2016 , 273-275, 1909-1914	1 0.4	1
24	New Physics Landmarks: Dark Matter and Neutrino Masses. <i>Advances in High Energy Physics</i> , 2018 , 2018, 1-2	1	1
23	Dark matter as the origin of neutrino mass in the inverse seesaw mechanism. <i>Physics Letters,</i> Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021 , 821, 136609	4.2	1
22			
21	Reloading the axion in a 3-3-1 setup. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2020 , 810, 135829	4.2	O
20	Standard and non-standard neutrino properties. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 118, 255-266		O
19	Scotogenic dark matter in an orbifold theory of flavor. <i>Journal of High Energy Physics</i> , 2020 , 2020, 1	5.4	O
18	Scotogenic neutrino masses with gauged matter parity and gauge coupling unification. <i>Journal of High Energy Physics</i> , 2022 , 2022, 1	5.4	O
17	High-energy colliders as a probe of neutrino properties. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2022 , 137110	4.2	O

LIST OF PUBLICATIONS

16	SU(6) Grand Unification of 3-3-1 Model. Springer Proceedings in Physics, 2018, 377-380	0.2
15	Neutrino masses: evidences and implications. <i>Journal of Physics: Conference Series</i> , 2014 , 485, 012005	0.3
14	Testing the Standard Model and beyond with the LENA proposal. <i>Journal of Physics: Conference Series</i> , 2014 , 485, 012044	0.3
13	Status and Implications of Neutrino Masses: A Brief Panorama. <i>Advanced Series on Directions in High Energy Physics</i> , 2015 , 25-37	0
12	Neutrinos and physics beyond the standard model. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1997 , 59, 249-261	
11	Status of neutrino oscillations and non-standard properties. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2003 , 114, 159-175	
10	Solar neutrino day-night effect and 🗓 3. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 145, 57-60	
9	Subleading effects in the 1-2 sector: Non-standard neutrino interactions. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 145, 61-64	
8	Status of global fits to neutrino oscillations. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 143, 523	
7	Why solar anti-neutrino data are very sensitive to Majorana neutrino magnetic moment?. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2005 , 143, 514	
6	Borexino as a test of solar matter density fluctuations. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 70, 345-347	
5	Pulsar velocities without neutrino mass. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1999 , 77, 440-444	
4	Update on the physics of neutrino mass. <i>Progress in Particle and Nuclear Physics</i> , 1994 , 32, 211-222	10.6
3	Neutrino mass physics. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1994 , 35, 309-320	
2	The 17KeV neutrino and the solar neutrino deficit. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1992 , 28, 142-147	
1	Gauge Theories and the Physics of Neutrino Mass 1991 , 91-171	