Xu Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3296380/publications.pdf

Version: 2024-02-01

236925 276875 2,700 42 25 41 citations h-index g-index papers 42 42 42 3694 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon, 2016, 101, 49-56.	10.3	275
2	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	19.5	226
3	Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nature Materials, 2019, 18, 156-162.	27.5	215
4	A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 13242-13248.	10.3	143
5	Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. Journal of Power Sources, 2016, 303, 372-378.	7.8	124
6	NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2018, 392, 23-32.	7.8	123
7	Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014, 77, 59-65.	10.3	114
8	Electrochemical Hydrogen Evolution Reaction Efficiently Catalyzed by Ru ₂ P Nanoparticles. ChemSusChem, 2018, 11, 2724-2729.	6.8	93
9	A FeP powder electrocatalyst for the hydrogen evolution reaction. Electrochemistry Communications, 2018, 92, 33-38.	4.7	92
10	Coupling Ultrafine Pt Nanocrystals over the Fe ₂ P Surface as a Robust Catalyst for Alcohol Fuel Electro-Oxidation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9496-9503.	8.0	86
11	Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures. Nano Energy, 2015, 15, 576-586.	16.0	85
12	La,Al-Codoped SrTiO ₃ as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. ACS Catalysis, 2021, 11, 11429-11439.	11.2	83
13	Electrochemical hydrogen evolution reaction boosted by constructing Ru nanoparticles assembled as a shell over semimetal Te nanorod surfaces in acid electrolyte. Chemical Communications, 2019, 55, 1490-1493.	4.1	81
14	Electrochemical oxygen evolution reaction efficiently catalyzed by a novel porous iron-cobalt-fluoride nanocube easily derived from 3-dimensional Prussian blue analogue. Journal of Power Sources, 2019, 424, 131-137.	7.8	79
15	Electrochemical oxygen evolution reaction catalyzed by a novel nickel–cobalt-fluoride catalyst. Chemical Communications, 2018, 54, 6204-6207.	4.1	77
16	Nanostructured FeNi ₃ Incorporated with Carbon Doped with Multiple Nonmetal Elements for the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 2703-2709.	6.8	75
17	Fluoridated Iron–Nickel Layered Double Hydroxide for Enhanced Performance in the Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3849-3855.	6.8	73
18	Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core–shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst. Nanoscale, 2018, 10, 16911-16918.	5.6	70

#	Article	IF	Citations
19	Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochimica Acta, 2019, 298, 313-320.	5.2	67
20	2 dimensional WS 2 tailored nitrogen-doped carbon nanofiber as a highly pseudocapacitive anode material for lithium-ion battery. Electrochimica Acta, 2018, 272, 119-126.	5.2	65
21	One-step efficiently coupling ultrafine Pt–Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction. Journal of Power Sources, 2019, 434, 226754.	7.8	64
22	An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction. Chemical Communications, 2019, 55, 9347-9350.	4.1	61
23	Nanostructured Ni ₂ P as an Efficient Catalyst for Urea Electrooxidation. ChemElectroChem, 2018, 5, 659-664.	3.4	51
24	Highly flexible pseudocapacitors of phosphorus-incorporated porous reduced graphene oxide films. Journal of Power Sources, 2018, 390, 93-99.	7.8	39
25	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	10.3	37
26	Carbon nanotubes branched on three-dimensional, nitrogen-incorporated reduced graphene oxide/iron oxide hybrid architecturesÂfor lithium ion battery anode. Journal of Alloys and Compounds, 2017, 726, 88-94.	5.5	26
27	Electrochemical Oxygen Reduction Reaction Performance Boosted by N, P Doped Carbon Layer over Manganese Dioxide Nanorod. ChemCatChem, 2019, 11, 4617-4623.	3.7	22
28	Phosphorus-modulated controllably oxidized carbon nanotube architectures for the ultrahigh energy density of pseudocapacitive capacitors. Electrochimica Acta, 2020, 341, 136044.	5.2	18
29	Boosting Redox-Active Sites of 1T MoS ₂ Phase by Phosphorus-Incorporated Hierarchical Graphene Architecture for Improved Li Storage Performances. ACS Applied Materials & Emp; Interfaces, 2020, 12, 51329-51336.	8.0	16
30	Surface oxidized iron-nickel nanorods anchoring on graphene architectures for oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 3579-3583.	9.0	16
31	Synthesis and characterization of electrospun PAN/2D MoS 2 composite nanofibers. Journal of Industrial and Engineering Chemistry, 2016, 34, 61-65.	5.8	15
32	Electron-spun 2D MoS2-decorated carbon nanofibers as pseudocapacitive electrode material into lithium ion battery. Journal of Alloys and Compounds, 2017, 728, 767-772.	5.5	15
33	Hierarchical Architectures Based on Ru Nanoparticles/Oxygenâ€Richâ€Carbon Nanotubes for Efficient Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 11150-11157.	3.3	13
34	Hierarchical structured, nitrogen-incorporated graphene aerogel for high performance supercapacitor. Macromolecular Research, 2017, 25, 1043-1048.	2.4	11
35	Pseudocapacitance: Emergent Pseudocapacitance of 2D Nanomaterials (Adv. Energy Mater. 13/2018). Advanced Energy Materials, 2018, 8, 1870058.	19.5	10
36	RuCo alloys anchoring on hierarchical oxidized CNT architectures with boosted catalytic activity for water splitting. Electrochimica Acta, 2022, 427, 140874.	5.2	8

#	Article	IF	CITATION
37	Molybdenum oxynitride nanoparticles on nitrogen-doped CNT architectures for the oxygen evolution reaction. Nanoscale Advances, 2020, 2, 5659-5665.	4.6	7
38	Improved Pseudocapacitive Performance of Graphene Architectures Modulating by Nitrogen/Phosphorus Dual-Doping and Steam-Activation. Macromolecular Research, 2021, 29, 582-588.	2.4	7
39	The effect of Fe(<scp>iii</scp>) ions on oxygen-vacancy-rich BiVO ₄ on the photocatalytic oxygen evolution reaction. Catalysis Science and Technology, 2021, 11, 7598-7607.	4.1	7
40	Defectâ€Rich Graphene Architecture Induced by Nitrogen and Phosphorus Dual Doping for Highâ€Performance Supercapacitors. Energy Technology, 2020, 8, 1900685.	3.8	6
41	Sulfurâ€Tuned Graphene Networks as Pseudocapacitive Material for High Performance Supercapacitors. Energy Technology, 2019, 7, 1800652.	3.8	5
42	Boosted Oxygen Evolution Reaction by Controllable Fluoridation on Porous Cobalt–Iron Nanoflakes. Energy & Fuels, 0, , .	5.1	0