
Sanzhong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3296367/publications.pdf Version: 2024-02-01

SANZHONC XII

#	Article	IF	CITATIONS
1	Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication, 2017, 9, 025003.	7.1	141
2	3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. Journal of the European Ceramic Society, 2016, 36, 1495-1503.	5.7	90
3	Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation. Bioactive Materials, 2021, 6, 1242-1254.	15.6	69
4	3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. Journal of Materials Chemistry B, 2017, 5, 2941-2951.	5.8	58
5	The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. Journal of Materials Chemistry B, 2016, 4, 3945-3958.	5.8	47
6	Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: Microstructure evaluation and mechanical evolution. Journal of the European Ceramic Society, 2021, 41, 1672-1682.	5.7	41
7	Regeneration of the Osteochondral Defect by a Wollastonite and Macroporous Fibrin Biphasic Scaffold. ACS Biomaterials Science and Engineering, 2018, 4, 1942-1953.	5.2	34
8	Hypoxia inducible factor-1 (HIF-1α) reduced inflammation in spinal cord injury via miR-380-3p/ NLRP3 by Circ 0001723. Biological Research, 2020, 53, 35.	3.4	33
9	Rational design of nonstoichiometric bioceramic scaffolds via digital light processing: tuning chemical composition and pore geometry evaluation. Journal of Biological Engineering, 2021, 15, 1.	4.7	31
10	Results of operative treatment of avulsion fractures of the iliac crest apophysis in adolescents. Injury, 2014, 45, 721-724.	1.7	28
11	3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances. Bioactive Materials, 2016, 1, 85-92.	15.6	28
12	Enhancing the Osteogenic Capability of Core–Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation. ACS Applied Materials & Interfaces, 2017, 9, 24497-24510.	8.0	27
13	Knockdown of miR-372 Inhibits Nerve Cell Apoptosis Induced by Spinal Cord Ischemia/Reperfusion Injury via Enhancing Autophagy by Up-regulating Beclin-1. Journal of Molecular Neuroscience, 2018, 66, 437-444.	2.3	26
14	Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-derived bioactive glass-ceramics. Journal of Non-Crystalline Solids, 2014, 405, 91-99.	3.1	22
15	MiR-136 controls neurocytes apoptosis by regulating Tissue Inhibitor of Metalloproteinases-3 in spinal cord ischemic injury. Biomedicine and Pharmacotherapy, 2017, 94, 47-54.	5.6	22
16	45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds. RSC Advances, 2015, 5, 102727-102735.	3.6	21
17	Rational Design and Fabrication of Porous Calcium–Magnesium Silicate Constructs That Enhance Angiogenesis and Improve Orbital Implantation. ACS Biomaterials Science and Engineering, 2016, 2, 1519-1527.	5.2	21
18	Seasonal variation and correlation analysis of vitamin D and parathyroid hormone in Hangzhou, Southeast China. Journal of Cellular and Molecular Medicine, 2020, 24, 7370-7377.	3.6	19

SANZHONG XU

#	Article	IF	CITATIONS
19	Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 140-149.	3.1	18
20	Preparation and <i>in vitro</i> evaluation of strontium-doped calcium silicate/gypsum bioactive bone cement. Biomedical Materials (Bristol), 2014, 9, 045002.	3.3	16
21	Comparison of the Therapeutic Efficacy of Surgery with or without Adjuvant Radiotherapy versus Radiotherapy Alone for Metastatic Spinal Cord Compression: A Meta-Analysis. World Neurosurgery, 2015, 83, 1066-1073.	1.3	16
22	Direct ink writing core-shell Wollastonite@Diopside scaffolds with tailorable shell micropores favorable for optimizing physicochemical and biodegradation properties. Journal of the European Ceramic Society, 2020, 40, 503-512.	5.7	15
23	Peroxisome proliferator-activated receptor-γ agonist rosiglitazone reduces secondary damage in experimental spinal cord injury. Journal of International Medical Research, 2013, 41, 153-161.	1.0	14
24	A facile pollutant-free approach toward a series of nutritionally effective calcium phosphate nanomaterials for food and drink additives. Journal of Nanoparticle Research, 2011, 13, 1039-1048.	1.9	12
25	Rational design and fabrication of a β-dicalcium silicate-based multifunctional cement with potential for root canal filling treatment. Journal of Materials Chemistry B, 2014, 2, 3830-3838.	5.8	12
26	Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds. International Journal of Energy Production and Management, 2022, 9, rbab077.	3.7	12
27	Low-melt bioactive glass-reinforced 3D printing akermanite porous cages with highly improved mechanical properties for lumbar spinal fusion. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1149-1162.	2.7	11
28	Core–Shell Biphasic Microspheres with Tunable Density of Shell Micropores Providing Tailorable Bone Regeneration. Tissue Engineering - Part A, 2019, 25, 588-602.	3.1	11
29	Hybrid calcium phosphate coatings with the addition of trace elements and polyaspartic acid by a low-thermal process. Biomedical Materials (Bristol), 2011, 6, 035002.	3.3	10
30	Intraâ€bone marrow injection of trace elements coâ€doped calcium phosphate microparticles for the treatment of osteoporotic rat. Journal of Biomedical Materials Research - Part A, 2017, 105, 1422-1432.	4.0	10
31	Core–shell-structured nonstoichiometric bioceramic spheres for improving osteogenic capability. Journal of Materials Chemistry B, 2017, 5, 8944-8956.	5.8	10
32	Injection of synthetic mesenchymal stem cell mitigates osteoporosis in rats after ovariectomy. Journal of Cellular and Molecular Medicine, 2018, 22, 3751-3757.	3.6	10
33	Design and evaluation of multifunctional antibacterial ion-doped Î ² -dicalcium silicate cements favorable for root canal sealing. RSC Advances, 2016, 6, 19707-19715.	3.6	9
34	Preparation and <i>In Vitro</i> Biological Evaluation of Octacalcium Phosphate/Bioactive Glass-Chitosan/Alginate Composite Membranes Potential for Bone Guided Regeneration. Journal of Nanoscience and Nanotechnology, 2016, 16, 5577-5585.	0.9	7
35	Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects. Biomedical Materials (Bristol), 2017, 12, 035010.	3.3	7
36	Acamprosate Protects Against Adjuvant-Induced Arthritis in Rats via Blocking the ERK/MAPK and NF-κB Signaling Pathway. Inflammation, 2018, 41, 1194-1199.	3.8	7

#	Article	IF	CITATIONS
37	Modification of poreâ€wall in direct ink writing wollastonite scaffolds favorable for tuning biodegradation and mechanical stability and enhancing osteogenic capability. FASEB Journal, 2020, 34, 5673-5687.	0.5	7
38	Effect of Foreign Ion Substitution and Micropore Tuning in Robocasting Single-Phase Bioceramic Scaffolds on the Physicochemical Property and Vascularization. ACS Applied Bio Materials, 2020, 3, 292-301.	4.6	3