Yuhong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/329599/publications.pdf

Version: 2024-02-01

1125271 1039406 13 443 9 13 citations h-index g-index papers 13 13 13 400 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Legacy effect of elevated CO2 and N fertilization on mineralization and retention of rice (Oryza sativa) Tj ETQq1 1	0.784314 2.4	l ggBT /Ove
2	Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers. Agriculture, Ecosystems and Environment, 2022, 326, 107798.	2.5	50
3	Anaerobic primed CO2 and CH4 in paddy soil are driven by Fe reduction and stimulated by biochar. Science of the Total Environment, 2022, 808, 151911.	3.9	15
4	Sources and intensity of CH4 production in paddy soils depend on iron oxides and microbial biomass. Biology and Fertility of Soils, 2022, 58, 181-191.	2.3	5
5	Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biology and Biochemistry, 2022, 169, 108669.	4.2	45
6	Contrasting response of organic carbon mineralisation to iron oxide addition under conditions of low and high microbial biomass in anoxic paddy soil. Biology and Fertility of Soils, 2021, 57, 117-129.	2.3	11
7	Microbial Resource Limitation in Aggregates in Karst and Non-Karst Soils. Agronomy, 2021, 11, 1591.	1.3	4
8	Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 2021, 398, 115121.	2.3	80
9	Enhanced topsoil P leaching in a short term flooded calcareous soil with combined straw and ammonium nitrogen incorporation. Geoderma, 2021, 402, 115322.	2.3	18
10	Acidification and anaerobic digestion change the phosphorus forms and distribution in particle fractions of cattle slurry and phosphorus dynamics in soil after application. Biosystems Engineering, 2020, 200, 101-111.	1.9	7
11	Slurry acidification and anaerobic digestion affects the speciation and vertical movement of particulate and nanoparticulate phosphorus in soil after cattle slurry application. Soil and Tillage Research, 2019, 189, 199-206.	2.6	12
12	Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis. Plant and Soil, 2019, 445, 137-152.	1.8	47
13	Phosphorus in China's Intensive Vegetable Production Systems: Overfertilization, Soil Enrichment, and Environmental Implications. Journal of Environmental Quality, 2013, 42, 982-989.	1.0	141