Michael J Manefield

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3295813/michael-j-manefield-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 99
 5,651
 30
 74

 papers
 citations
 h-index
 g-index

 103
 6,435
 6.6
 5.52

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
99	Aerobic biotransformation of 6:2 fluorotelomer sulfonate by Dietzia aurantiaca J3 under sulfur-limiting conditions <i>Science of the Total Environment</i> , 2022 , 829, 154587	10.2	O
98	Dehalobium species implicated in 2,3,7,8-tetrachlorodibenzo-p-dioxin dechlorination in the contaminated sediments of Sydney Harbour Estuary <i>Marine Pollution Bulletin</i> , 2022 , 179, 113690	6.7	0
97	Microbiologically influenced stress corrosion cracking responsible for catastrophic failure of cable bolts. <i>Engineering Failure Analysis</i> , 2021 , 131, 105884	3.2	2
96	Inferring trophic conditions in managed aquifer recharge systems from metagenomic data. <i>Science of the Total Environment</i> , 2021 , 772, 145512	10.2	
95	Synthetic biological circuit tested in spaceflight. <i>Life Sciences in Space Research</i> , 2021 , 28, 57-65	2.4	2
94	Removal of per- and polyfluoroalkyl substances (PFAS) from water by ceric(iv) ammonium nitrate <i>RSC Advances</i> , 2021 , 11, 17642-17645	3.7	0
93	Exploring potential impact(s) of cerium in mining wastewater on the performance of partial-nitrification process and nitrogen conversion microflora. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 209, 111796	7	3
92	Novel dichloromethane-fermenting bacteria in the Peptococcaceae family. ISME Journal, 2021, 15, 170	9-117.31	3
91	Developing a roadmap to determine per- and polyfluoroalkyl substances-microbial population interactions. <i>Science of the Total Environment</i> , 2020 , 712, 135994	10.2	13
90	Constraining source attribution of methane in an alluvial aquifer with multiple recharge pathways. <i>Science of the Total Environment</i> , 2020 , 703, 134927	10.2	3
89	Secondary Effects of Antibiotics on Microbial Biofilms. <i>Frontiers in Microbiology</i> , 2020 , 11, 2109	5.7	12
88	Reductive metabolism of the important atmospheric gas isoprene by homoacetogens. <i>ISME Journal</i> , 2019 , 13, 1168-1182	11.9	10
87	Isolation, characterization and bioaugmentation of an acidotolerant 1,2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	5
86	Reductive Dehalogenation of Trichloromethane by Two Different Dehalobacter restrictus Strains Reveal Opposing Dual Element Isotope Effects. <i>Environmental Science & Environmental Science & Environme</i>	2 ¹ 2343	3 10
85	Method Development for DNA and Proteome SIP Analysis of Activated Sludge for Anaerobic Dichloromethane Biodegradation. <i>Methods in Molecular Biology</i> , 2019 , 2046, 207-219	1.4	1
84	Whole genome sequencing of a novel, dichloromethane-fermenting from an enrichment culture. <i>PeerJ</i> , 2019 , 7, e7775	3.1	2
83	Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. <i>ISME Journal</i> , 2019 , 13, 632-650	11.9	24

(2016-2018)

82	Locked nucleic acid molecular beacon for multiplex detection of loop mediated isothermal amplification. <i>Sensors and Actuators B: Chemical</i> , 2018 , 268, 255-263	8.5	28	
81	Heterologous Production and Purification of a Functional Chloroform Reductive Dehalogenase. <i>ACS Chemical Biology</i> , 2018 , 13, 548-552	4.9	8	
8o	Nutrient and acetate amendment leads to acetoclastic methane production and microbial community change in a non-producing Australian coal well. <i>Microbial Biotechnology</i> , 2018 , 11, 626-638	6.3	15	
79	Dependency of DNA extraction efficiency on cell concentration confounds molecular quantification of microorganisms in groundwater. <i>FEMS Microbiology Ecology</i> , 2018 , 94,	4.3	6	
78	Design and synthesis of short amphiphilic cationic peptidomimetics based on biphenyl backbone as antibacterial agents. <i>European Journal of Medicinal Chemistry</i> , 2018 , 143, 1702-1722	6.8	20	
77	Syntrophic Partners Enhance Growth and Respiratory Dehalogenation of Hexachlorobenzene by Strain CBDB1. <i>Frontiers in Microbiology</i> , 2018 , 9, 1927	5.7	11	
76	Amphipathic guanidine-embedded glyoxamide-based peptidomimetics as novel antibacterial agents and biofilm disruptors. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 2033-2051	3.9	19	
75	Genome Sequence of sp. Strain TeCB1, Able To Respire Chlorinated Benzenes. <i>Genome Announcements</i> , 2017 , 5,		3	
74	Synthesis and biological evaluation of novel acyclic and cyclic glyoxamide based derivatives as bacterial quorum sensing and biofilm inhibitors. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 5743-57	53 ^{.9}	10	
73	The Nature and Relevance of Solvent Stress in Microbes and Mechanisms of Tolerance 2017 , 201-213		3	
72	Synthesis of antimicrobial glucosamides as bacterial quorum sensing mechanism inhibitors. <i>Bioorganic and Medicinal Chemistry</i> , 2017 , 25, 1183-1194	3.4	10	
71	Investigation of the microbial communities colonizing prepainted steel used for roofing and walling. <i>MicrobiologyOpen</i> , 2017 , 6, e00425	3.4	4	
70	A bacterial chloroform reductive dehalogenase: purification and biochemical characterization. <i>Microbial Biotechnology</i> , 2017 , 10, 1640-1648	6.3	9	
69	Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	7	
68	Biogeochemical constraints on the origin of methane in an alluvial aquifer: evidence for the upward migration of methane from underlying coal measures. <i>Biogeosciences</i> , 2017 , 14, 215-228	4.6	14	
	Isolation and Characterization of sp. Strain TeCB1 Including Identification of TcbA: A Novel Tetra-		17	
67	and Trichlorobenzene Reductive Dehalogenase. <i>Frontiers in Microbiology</i> , 2017 , 8, 558	5.7	17	
66		5·7 5·7	14	

64	Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies. <i>Current Opinion in Biotechnology</i> , 2016 , 41, 99-107	11.4	34
63	Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation. <i>Energy and Environmental Science</i> , 2016 , 9, 644-655	35.4	50
62	Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. <i>Journal of Hazardous Materials</i> , 2016 , 308, 106-12	12.8	39
61	Synthesis and biological evaluation of N-naphthoyl-phenylglyoxamide-based small molecular antimicrobial peptide mimics as novel antimicrobial agents and biofilm inhibitors. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 3623-37	3.9	23
60	Design, synthesis and evaluation of N-aryl-glyoxamide derivatives as structurally novel bacterial quorum sensing inhibitors. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 680-693	3.9	25
59	N-Acetylglucosamine Inhibits LuxR, LasR and CviR Based Quorum Sensing Regulated Gene Expression Levels. <i>Frontiers in Microbiology</i> , 2016 , 7, 1313	5.7	11
58	Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules. <i>Frontiers in Microbiology</i> , 2016 , 7, 972	5.7	36
57	High-rate, High Temperature Acetotrophic Methanogenesis Governed by a Three Population Consortium in Anaerobic Bioreactors. <i>PLoS ONE</i> , 2016 , 11, e0159760	3.7	11
56	Isolation and characterization of Dehalobacter sp. strain UNSWDHB capable of chloroform and chlorinated ethane respiration. <i>Environmental Microbiology</i> , 2016 , 18, 3092-105	5.2	28
55	Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI. <i>Journal of Contaminant Hydrology</i> , 2016 , 188, 1-11	3.9	15
54	Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome. <i>Antimicrobial Agents and Chemotherapy</i> , 2016 , 60, 4539-51	5.9	30
53	Aliphatic organochlorine degradation in subsurface environments. <i>Reviews in Environmental Science and Biotechnology</i> , 2015 , 14, 49-71	13.9	20
52	Ecotoxicity of neutral red (dye) and its environmental applications. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 186-92	7	17
51	Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 126-35	7	45
50	Relative contributions of Dehalobacter and zerovalent iron in the degradation of chlorinated methanes. <i>Environmental Science & Environmental Science </i>	10.3	22
49	Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. <i>Scientific Reports</i> , 2015 , 5, 8398	4.9	95
48	Biomining and methanogenesis for resource extraction from asteroids. <i>Space Policy</i> , 2015 , 34, 18-22	1.4	5
47	Mass culture strategy for bacterial yeast co-culture for degradation of petroleum hydrocarbons in marine environment. <i>Marine Pollution Bulletin</i> , 2015 , 100, 191-199	6.7	16

(2012-2015)

46	Anaerobic microorganisms and bioremediation of organohalide pollution. <i>Microbiology Australia</i> , 2015 , 36, 125	0.8	5
45	The role of lipids in activated sludge floc formation. <i>AIMS Environmental Science</i> , 2015 , 2, 122-133	1.9	4
44	Metal(loid) bioaccessibility dictates microbial community composition in acid sulfate soil horizons and sulfidic drain sediments. <i>Environmental Science & Environmental Scien</i>	10.3	10
43	Interface thermodynamic state-induced high-performance memristors. <i>Langmuir</i> , 2014 , 30, 1183-9	4	18
42	Identification of toluene degraders in a methanogenic enrichment culture. <i>FEMS Microbiology Ecology</i> , 2014 , 89, 625-36	4.3	40
41	Surface analysis reveals biogenic oxidation of sub-bituminous coal by Pseudomonas fluorescens. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 6443-52	5.7	14
40	Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing. <i>ISME Journal</i> , 2014 , 8, 1855-65	11.9	29
39	The application of a carrier-based bioremediation strategy for marine oil spills. <i>Marine Pollution Bulletin</i> , 2014 , 84, 339-46	6.7	10
38	Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. <i>PLoS ONE</i> , 2014 , 9, e91935	3.7	102
37	The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. <i>Environmental Microbiology Reports</i> , 2013 , 5, 778-86	3.7	151
36	Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa. <i>Communicative and Integrative Biology</i> , 2013 , 6, e23570	1.7	18
35	Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. <i>PLoS ONE</i> , 2013 , 8, e58299	3.7	70
34	Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri. <i>PLoS ONE</i> , 2013 , 8, e67443	3.7	9
33	Successful microcosm demonstration of a strategy for biodegradation of a mixture of carbon tetrachloride and perchloroethene harnessing sulfate reducing and dehalorespiring bacteria. <i>Journal of Hazardous Materials</i> , 2012 , 219-220, 169-75	12.8	13
32	Complete chloroform dechlorination by organochlorine respiration and fermentation. <i>Environmental Microbiology</i> , 2012 , 14, 883-94	5.2	79
31	An alternative SEM drying method using hexamethyldisilazane (HMDS) for microbial cell attachment studies on sub-bituminous coal. <i>Journal of Microbiological Methods</i> , 2012 , 90, 96-9	2.8	72
30	The presence and role of bacterial quorum sensing in activated sludge. <i>Microbial Biotechnology</i> , 2012 , 5, 621-33	6.3	92
29	Capillary electrophoresis ribosomal RNA single-stranded conformation polymorphism: a new approach for characterization of low-diversity microbial communities. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 404, 1897-906	4.4	4

28	Bacterial and fungal community composition over time in chicken litter with high or low moisture content. <i>British Poultry Science</i> , 2012 , 53, 561-9	1.9	29
27	Direct rRNA fingerprinting, a novel method to profile low diversity microbial communities. <i>Microbial Ecology</i> , 2011 , 62, 177-87	4.4	4
26	Identification of ciliate grazers of autotrophic bacteria in ammonia-oxidizing activated sludge by RNA stable isotope probing. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 2203-11	4.8	32
25	A process for the purification of organochlorine contaminated activated carbon: Sequential solvent purging and reductive dechlorination. <i>Water Research</i> , 2010 , 44, 1580-90	12.5	6
24	Reactive iron barriers: a niche enabling microbial dehalorespiration of 1,2-dichloroethane. <i>Applied Microbiology and Biotechnology</i> , 2010 , 88, 319-25	5.7	18
23	Development of a treatment solution for reductive dechlorination of hexachloro-1,3-butadiene in vadose zone soil. <i>Biodegradation</i> , 2010 , 21, 947-56	4.1	10
22	An appraisal of methods for linking environmental processes to specific microbial taxa. <i>Reviews in Environmental Science and Biotechnology</i> , 2010 , 9, 153-185	13.9	23
21	Electron shuttles in biotechnology. Current Opinion in Biotechnology, 2009, 20, 633-41	11.4	215
20	The ecology of RNA. ISME Journal, 2008, 2, 1-2	11.9	8
19	Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. <i>ISME Journal</i> , 2008 , 2, 843-52	11.9	101
18	DNA stable-isotope probing. <i>Nature Protocols</i> , 2007 , 2, 860-6	18.8	329
17	RNA stable-isotope probing. <i>Nature Protocols</i> , 2007 , 2, 838-44	18.8	100
16	Influence of sustainability and immigration in assembling bacterial populations of known size and function. <i>Microbial Ecology</i> , 2007 , 53, 348-54	4.4	11
15	Options for In Situ Remediation of Soil Contaminated with a Mixture of Perchlorinated Compounds. <i>Bioremediation Journal</i> , 2007 , 11, 113-124	2.3	8
14	Acylated homoserine lactones in the environment: chameleons of bioactivity. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2007 , 362, 1235-40	5.8	24
13	Insights into the fate of a 13C labelled phenol pulse for stable isotope probing (SIP) experiments. Journal of Microbiological Methods, 2007, 69, 340-4	2.8	26
12	Unlocking the Vnicrobial black boxVusing RNA-based stable isotope probing technologies. <i>Current Opinion in Biotechnology</i> , 2006 , 17, 67-71	11.4	87
11	RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3586-92	4.8	156

LIST OF PUBLICATIONS

10	Functional and compositional comparison of two activated sludge communities remediating coking effluent. <i>Environmental Microbiology</i> , 2005 , 7, 715-22	5.2	70
9	Colonial architecture in mixed species assemblages affects AHL mediated gene expression. <i>FEMS Microbiology Letters</i> , 2005 , 244, 121-7	2.9	20
8	N-acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. <i>Environmental Microbiology</i> , 2004 , 6, 424-33	5.2	134
7	Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. <i>Environmental Microbiology</i> , 2004 , 6, 73-8	5.2	468
6	13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. <i>Journal of Microbiological Methods</i> , 2004 , 58, 119-29	2.8	66
	Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal,		
5	2003 , 22, 3803-15	13	1019
4		2.2	1019
	2003 , 22, 3803-15 Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. <i>Rapid Communications in Mass Spectrometry</i> ,		
4	 2003, 22, 3803-15 Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. <i>Rapid Communications in Mass Spectrometry</i>, 2002, 16, 2179-83 RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. 	2.2	109