
Chuang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3295369/publications.pdf Version: 2024-02-01

CHUANC FENC

#	Article	IF	CITATIONS
1	Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate. Applied Mathematical Modelling, 2022, 101, 239-258.	2.2	36
2	Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs). Archives of Civil and Mechanical Engineering, 2022, 22, 1.	1.9	27
3	Temperature-dependent mechanical properties of defective graphene reinforced polymer nanocomposite. Mechanics of Advanced Materials and Structures, 2021, 28, 1010-1019.	1.5	11
4	Parametric Study on Mechanical, Thermal and Electrical Properties of Graphene Reinforced Composites by Effective Medium Theory. International Journal of Applied Mechanics, 2021, 13, 2150008.	1.3	7
5	Nonlinear vibration of FC-GPLRC dielectric plate with active tuning using differential quadrature method. Computer Methods in Applied Mechanics and Engineering, 2021, 379, 113761.	3.4	47
6	Electrical, Piezoresistive and Electromagnetic Properties of Graphene Reinforced Cement Composites: A Review. Nanomaterials, 2021, 11, 3220.	1.9	16
7	Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints. Aerospace Science and Technology, 2020, 107, 106326.	2.5	50
8	Static response of functionally graded graphene platelet–reinforced composite plate with dielectric property. Journal of Intelligent Material Systems and Structures, 2020, 31, 2211-2228.	1.4	35
9	<i>In situ</i> synthesis of silver nanowire gel and its super-elastic composite foams. Nanoscale, 2020, 12, 19861-19869.	2.8	18
10	Electromechanical Behaviors of Graphene Reinforced Polymer Composites: A Review. Materials, 2020, 13, 528.	1.3	11
11	Geometrically nonlinear bending of functionally graded nanocomposite trapezoidal plates reinforced with graphene platelets (GPLs). International Journal of Mechanics and Materials in Design, 2019, 15, 791-800.	1.7	15
12	Tensile property enhancement of defective graphene/epoxy nanocomposite by hydrogen functionalization. Composite Structures, 2019, 224, 111079.	3.1	46
13	Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs). Aerospace Science and Technology, 2019, 91, 208-218.	2.5	61
14	Nonlinear free vibration of graphene platelets (GPLs)/polymer dielectric beam. Smart Materials and Structures, 2019, 28, 055013.	1.8	31
15	Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity. Applied Mathematical Modelling, 2019, 71, 298-315.	2.2	58
16	Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL). Composite Structures, 2018, 202, 38-46.	3.1	129
17	Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. European Polymer Journal, 2018, 98, 475-482.	2.6	51
18	Buckling of Graphene Platelet Reinforced Composite Cylindrical Shell with Cutout. International Journal of Structural Stability and Dynamics, 2018, 18, 1850040.	1.5	93

CHUANG FENG

#	Article	IF	CITATIONS
19	Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout. Composite Structures, 2018, 197, 72-79.	3.1	96
20	Nanocellulose reinforced P(AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility. Composites Part A: Applied Science and Manufacturing, 2018, 112, 395-404.	3.8	45
21	Effects of Reorientation of Graphene Platelets (GPLs) on Young's Modulus of Polymer Composites under Bi-Axial Stretching. Nanomaterials, 2018, 8, 27.	1.9	28
22	Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites. Polymers, 2018, 10, 477.	2.0	70
23	Tensile and compressive behaviors of prestrained single-layer black phosphorus: a molecular dynamics study. Nanoscale, 2017, 9, 3609-3619.	2.8	16
24	Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Engineering Structures, 2017, 140, 110-119.	2.6	267
25	Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Composite Structures, 2017, 180, 799-808.	3.1	172
26	Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Composites Part B: Engineering, 2017, 110, 132-140.	5.9	326
27	Effects of Reorientation of Graphene Platelets (GPLs) on Young's Modulus of Polymer Nanocomposites under Uni-Axial Stretching. Polymers, 2017, 9, 532.	2.0	27
28	FLEXURAL VIBRATION ANALYSIS OF GRAPHENE NANOPLATELETS REINFORCED NANOCOMPOSITE BEAMS. , 2016, , .		1
29	Nonlinear Vibration of PZT4/PZT-5H Monomorph and Bimorph Beams with Graded Microstructures. International Journal of Structural Stability and Dynamics, 2015, 15, 1540015.	1.5	9
30	Dynamic Buckling of Thermo-Electro-Mechanically Loaded FG-CNTRC Beams. International Journal of Structural Stability and Dynamics, 2015, 15, 1540017.	1.5	33
31	Micromechanics Modeling of Bi-Axial Stretching Effects on the Electrical Conductivity of CNT-Polymer Composites. International Journal of Applied Mechanics, 2015, 07, 1550005.	1.3	20
32	Investigation of uniaxial stretching effects on the electrical conductivity of CNT–polymer nanocomposites. Journal Physics D: Applied Physics, 2014, 47, 405103.	1.3	55
33	Dynamic analysis of a dielectric elastomer-based microbeam resonator with large vibration amplitude. International Journal of Non-Linear Mechanics, 2014, 65, 63-68.	1.4	29
34	Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2013, 47, 143-149.	3.8	256
35	Dynamic characteristics of a dielectric elastomer-based microbeam resonator with small vibration amplitude. Journal of Micromechanics and Microengineering, 2011, 21, 095002.	1.5	41
36	Molecular dynamics simulation of squeeze-film damping effect on nano resonators in the free molecular regime. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1605-1609.	1.3	12

#	Article	IF	CITATIONS
37	Squeeze-film effects in MEMS devices with perforated plates for small amplitude vibration. Microsystem Technologies, 2007, 13, 625-633.	1.2	25
38	Heat Treatment Microstructures of a Directionally Solidified Nickel Base Superalloy under High Temperature Gradient. Materials Science Forum, 0, 788, 519-524.	0.3	0