
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3295190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 Inhibitors in p53WT Uterine Leiomyosarcoma. Cancers, 2022, 14, 14.	3.7	5
2	Structure-Based Design of Potent and Orally Active Isoindolinone Inhibitors of MDM2-p53 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 4071-4088.	6.4	30
3	WIP1 Inhibition by GSK2830371 Potentiates HDM201 through Enhanced p53 Phosphorylation and Activation in Liver Adenocarcinoma Cells. Cancers, 2021, 13, 3876.	3.7	3
4	HCV Activates Somatic L1 Retrotransposition—A Potential Hepatocarcinogenesis Pathway. Cancers, 2021, 13, 5079.	3.7	7
5	Targeting P53 as a Future Strategy to Overcome Gemcitabine Resistance in Biliary Tract Cancers. Biomolecules, 2020, 10, 1474.	4.0	19
6	Non-genotoxic MDM2 inhibition selectively induces a pro-apoptotic p53 gene signature in chronic lymphocytic leukemia cells. Haematologica, 2019, 104, 2429-2442.	3.5	15
7	TP53 mutant cell lines selected for resistance to MDM2 inhibitors retain growth inhibition by MAPK pathway inhibitors but a reduced apoptotic response. Cancer Cell International, 2019, 19, 53.	4.1	9
8	ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers, 2019, 11, 3.	3.7	26
9	Preclinical evaluation of the first intravenous small molecule MDM2 antagonist alone and in combination with temozolomide in neuroblastoma. International Journal of Cancer, 2019, 144, 3146-3159.	5.1	23
10	Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. British Journal of Cancer, 2018, 118, 495-508.	6.4	47
11	Highly Potent Clickable Probe for Cellular Imaging of MDM2 and Assessing Dynamic Responses to MDM2-p53 Inhibition. Bioconjugate Chemistry, 2018, 29, 2100-2106.	3.6	3
12	Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours. International Journal of Oncology, 2018, 52, 967-977.	3.3	4
13	Characterization and drug sensitivity of a novel human ovarian clear cell carcinoma cell line genomically and phenotypically similar to the original tumor. Cancer Medicine, 2018, 7, 4744-4754.	2.8	9
14	Combination treatment with rucaparib (Rubraca) and MDM2 inhibitors, Nutlin-3 and RG7388, has synergistic and dose reduction potential in ovarian cancer. Oncotarget, 2017, 8, 69779-69796.	1.8	27
15	Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Molecular Cancer Therapeutics, 2016, 15, 379-391.	4.1	36
16	<i>TP53</i> mutant <i>MDM2</i> -amplified cell lines selected for resistance to MDM2-p53 binding antagonists retain sensitivity to ionizing radiation. Oncotarget, 2016, 7, 46203-46218.	1.8	22
17	Nutlin-3 inhibits androgen receptor-driven c-FLIP expression, resulting in apoptosis of prostate cancer cells. Oncotarget, 2016, 7, 74724-74733.	1.8	4
18	Pre-clinical efficacy and synergistic potential of the MDM2-p53 antagonists, Nutlin-3 and RG7388, as single agents and in combined treatment with cisplatin in ovarian cancer. Oncotarget, 2016, 7, 40115-40134.	1.8	53

#	Article	IF	CITATIONS
19	PARP1 expression, activity and <i>ex vivo</i> sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia. Oncotarget, 2015, 6, 43978-43991.	1.8	31
20	Phase I Study of Lapatinib and Pemetrexed in the Second-Line Treatment of Advanced or Metastatic Non–Small-Cell Lung Cancer With Assessment of Circulating Cell Free Thymidylate Synthase RNA as a Potential Biomarker. Clinical Lung Cancer, 2015, 16, 348-357.	2.6	14
21	Searching for Dual Inhibitors of the <scp>MDM</scp> 2â€p53 and <scp>MDMX</scp> â€p53 Protein–Protein Interaction by a Scaffoldâ€Hopping Approach. Chemical Biology and Drug Design, 2015, 86, 180-189.	3.2	12
22	Pre-clinical evaluation of the MDM2-p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma. Oncotarget, 2015, 6, 10207-10221.	1.8	64
23	Diaryl- and triaryl-pyrrole derivatives: inhibitors of the MDM2–p53 and MDMX–p53 protein–protein interactions. MedChemComm, 2013, 4, 1297.	3.4	24
24	Non-glucose metabolism in cancer cells—is it all in the fat?. Cancer and Metastasis Reviews, 2012, 31, 689-698.	5.9	72
25	Of dogs and men: Comparative biology as a tool for the discovery of novel biomarkers and drug development targets in osteosarcoma. Pediatric Blood and Cancer, 2012, 58, 327-333.	1.5	57
26	Outcome of the p53-mediated DNA damage response in neuroblastoma is determined by morphological subtype and MYCN expression. Cell Cycle, 2011, 10, 3778-3787.	2.6	12
27	MDM2-p53 protein–protein interaction inhibitors: A-ring substituted isoindolinones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5916-9.	2.2	36
28	Isoindolinone Inhibitors of the Murine Double Minute 2 (MDM2)-p53 Proteinâ^'Protein Interaction: Structureâ^'Activity Studies Leading to Improved Potency. Journal of Medicinal Chemistry, 2011, 54, 1233-1243.	6.4	130
29	A Multilocus Technique for Risk Evaluation of Patients with Neuroblastoma. Clinical Cancer Research, 2011, 17, 792-804.	7.0	39
30	High Frequency of p53/MDM2/p14ARF Pathway Abnormalities in Relapsed Neuroblastoma. Clinical Cancer Research, 2010, 16, 1108-1118.	7.0	143
31	p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma. Cancer Research, 2010, 70, 1377-1388.	0.9	118
32	MYCN oncoprotein targets and their therapeutic potential. Cancer Letters, 2010, 293, 144-157.	7.2	92
33	Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage. Nucleic Acids Research, 2009, 37, 2962-2973.	14.5	47
34	Molecular pathology and potential therapeutic targets in soft-tissue sarcoma. Expert Review of Anticancer Therapy, 2008, 8, 939-948.	2.4	9
35	Disruption of the MYC transcriptional function by a small-molecule antagonist of MYC/MAX dimerization. Oncology Reports, 2008, , .	2.6	14
36	Disruption of the MYC transcriptional function by a small-molecule antagonist of MYC/MAX dimerization. Oncology Reports, 2008, 19, 825-30.	2.6	26

#	Article	IF	CITATIONS
37	p53 is Nuclear and Functional in Both Undifferentiated and Differentiated Neuroblastoma. Cell Cycle, 2007, 6, 2685-2696.	2.6	40
38	Cell Cycle Regulation Targets of MYCN Identified by Gene Expression Microarrays. Cell Cycle, 2007, 6, 1249-1256.	2.6	44
39	Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate, 2007, 67, 900-906.	2.3	44
40	High-resolution analysis of allelic imbalance in neuroblastoma cell lines by single nucleotide polymorphism arrays. Cancer Genetics and Cytogenetics, 2007, 172, 127-138.	1.0	36
41	Small-Molecule Inhibitors of the MDM2-p53 Proteinâ^'Protein Interaction Based on an Isoindolinone Scaffold. Journal of Medicinal Chemistry, 2006, 49, 6209-6221.	6.4	136
42	The Role of MYCN in the Failure of MYCN Amplified Neuroblastoma Cell Lines to G1 Arrest After DNA Damage. Cell Cycle, 2006, 5, 2639-2647.	2.6	44
43	Increased Frequency of Aberrations in the p53/MDM2/p14ARF Pathway in Neuroblastoma Cell Lines Established at Relapse. Cancer Research, 2006, 66, 2138-2145.	0.9	113
44	Isoindolinone-based inhibitors of the MDM2–p53 protein–protein interaction. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1515-1520.	2.2	89
45	No Evidence for Correlation of DDX1 Gene Amplification With Improved Survival Probability in Patients With MYCN-Amplified Neuroblastomas. Journal of Clinical Oncology, 2005, 23, 3167-3168.	1.6	24
46	Characterisation of a novel p53 down-regulated promoter in intron 3 of the human MDM2 oncogene. Gene, 2005, 361, 112-118.	2.2	15
47	Genomic organisation of the human MDM2 oncogene and relationship to its alternatively spliced mRNAs. Gene, 2004, 338, 217-223.	2.2	24
48	Genes co-amplified with MYCN in neuroblastoma: silent passengers or co-determinants of phenotype?. Cancer Letters, 2003, 197, 81-86.	7.2	36
49	The p53 pathway and its inactivation in neuroblastoma. Cancer Letters, 2003, 197, 93-98.	7.2	159
50	The MYCN oncoprotein as a drug development target. Cancer Letters, 2003, 197, 125-130.	7.2	66
51	The neuroblastoma amplified gene, NAG : genomic structure and characterisation of the 7.3 kb transcript predominantly expressed in neuroblastoma. Gene, 2003, 307, 1-11.	2.2	34
52	Alteration in urinary matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio predicts recurrence in nonmuscle-invasive bladder cancer. Clinical Cancer Research, 2003, 9, 2576-82.	7.0	34
53	Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[(131)I]iodobenzylguanidine by neuroblastoma tumors. Clinical Cancer Research, 2003, 9, 3338-44.	7.0	48
54	Comparative Assessment Expression of the Inhibitor of Growth 1 Gene (ING1) in Normal and Neoplastic Tissues. Hybridoma, 2002, 21, 1-10.	0.4	30

#	Article	IF	CITATIONS
55	Quantification of MYCN, DDX1, and NAG Gene Copy Number in Neuroblastoma Using a Real-Time Quantitative PCR Assay. Modern Pathology, 2002, 15, 159-166.	5.5	167
56	Breakpoint position on 17q identifies the most aggressive neuroblastoma tumors. Genes Chromosomes and Cancer, 2002, 34, 428-436.	2.8	46
57	p53 Cellular Localization and Function in Neuroblastoma. American Journal of Pathology, 2001, 158, 2067-2077.	3.8	86
58	NovelERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosomes and Cancer, 2001, 31, 288-294.	2.8	53
59	Molecular cytogenetic delineation of 17q translocation breakpoints in neuroblastoma cell lines. , 1998, 23, 116-122.		36
60	Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: Transforming ability and frequent detection in human cancer. Nature Medicine, 1996, 2, 912-917.	30.7	255
61	High level expression of the multidrug resistance (MDRI) gene in the normal bladder urothelium: a potential involvement in protection against carcinogens?. Carcinogenesis, 1996, 17, 601-604.	2.8	22
62	Cultured Human Melanocytes Respond to MSH Peptides and ACTH. Pigment Cell & Melanoma Research, 1994, 7, 217-221.	3.6	77
63	Analysis of the p53 tumor-suppressor gene in hepatocellular carcinomas from britain. Hepatology, 1992, 16, 1362-1366.	7.3	104