Stefan G Koenig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3295062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved iGAL 2.0 Metric Empowers Pharmaceutical Scientists to Make Meaningful Contributions to United Nations Sustainable Development Goal 12. ACS Sustainable Chemistry and Engineering, 2022, 10, 5148-5162.	6.7	31
2	Challenges in the structure determination of a dimeric impurity found during development of GDC-0326. Journal of Pharmaceutical and Biomedical Analysis, 2022, 213, 114627.	2.8	1
3	Metal atalyzed Organic Reactions by Resonant Acoustic Mixing**. Angewandte Chemie, 2022, 134, e202115030.	2.0	4
4	Metalâ€Catalyzed Organic Reactions by Resonant Acoustic Mixing**. Angewandte Chemie - International Edition, 2022, 61, e202115030.	13.8	18
5	Grassroots and blue skies lead to greener landscapes. Current Research in Green and Sustainable Chemistry, 2022, 5, 100242.	5.6	0
6	Three-Component Coupling of Arenes, Ethylene, and Alkynes Catalyzed by a Cationic Bis(phosphine) Cobalt Complex: Intercepting Metallacyclopentenes for C–H Functionalization. Journal of the American Chemical Society, 2022, 144, 4530-4540.	13.7	19
7	Importance of Green and Sustainable Chemistry in the Chemical Industry. Organic Process Research and Development, 2022, 26, 2176-2178.	2.7	6
8	Sustainability Challenges and Opportunities in Oligonucleotide Manufacturing. Journal of Organic Chemistry, 2021, 86, 49-61.	3.2	39
9	Development of a practical synthesis to PI3K α-selective inhibitor GDC-0326. Tetrahedron, 2021, 79, 131840.	1.9	4
10	Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120392.	5.2	29
11	An Efficient Second-Generation Manufacturing Process for the pan-RAF Inhibitor Belvarafenib. Organic Process Research and Development, 2021, 25, 2338-2350.	2.7	6
12	Sustainable Chemistry and Engineering in Pharma. ACS Sustainable Chemistry and Engineering, 2021, 9, 13395-13398.	6.7	5
13	Introduction of a process mass intensity metric for biologics. New Biotechnology, 2019, 49, 37-42.	4.4	57
14	The PMI Predictor app to enable green-by-design chemical synthesis. Nature Sustainability, 2019, 2, 1034-1040.	23.7	36
15	Discovery and Development of the First Antibody–Antibiotic Conjugate Linker-Drug. ACS Symposium Series, 2019, , 85-105.	0.5	2
16	A Green Chemistry Continuum for a Robust and Sustainable Active Pharmaceutical Ingredient Supply Chain. ACS Sustainable Chemistry and Engineering, 2019, 7, 16937-16951.	6.7	37
17	A telescoped Knochel-Hauser/Kumada-Corriu coupling strategy to functionalized aromatic heterocycles. Tetrahedron Letters, 2019, 60, 5-7.	1.4	3
18	Inspiring process innovation <i>via</i> an improved green manufacturing metric: iGAL. Green Chemistry, 2018, 20, 2206-2211.	9.0	69

STEFAN G KOENIG

#	Article	IF	CITATIONS
19	Highly Efficient Synthesis of a <i>Staphylococcus aureus</i> Targeting Payload to Enable the First Antibody–Antibiotic Conjugate. Chemistry - A European Journal, 2018, 24, 2837-2840.	3.3	7
20	Key Green Chemistry research areas from a pharmaceutical manufacturers' perspective revisited. Green Chemistry, 2018, 20, 5082-5103.	9.0	384
21	Evaluating the Impact of a Decade of Funding from the Green Chemistry Institute Pharmaceutical Roundtable. Organic Process Research and Development, 2018, 22, 1344-1359.	2.7	35
22	Development of a Practical Synthesis of ERK Inhibitor GDC-0994. Organic Process Research and Development, 2017, 21, 387-398.	2.7	17
23	Recent advances in flow chemistry in the pharmaceutical industry. Green Chemistry, 2017, 19, 1418-1419.	9.0	24
24	GNE-781, A Highly Advanced Potent and Selective Bromodomain Inhibitor of Cyclic Adenosine Monophosphate Response Element Binding Protein, Binding Protein (CBP). Journal of Medicinal Chemistry, 2017, 60, 9162-9183.	6.4	77
25	Driving toward greener chemistry in the pharmaceutical industry. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 56-59.	5.9	19
26	A deeper shade of green: inspiring sustainable drug manufacturing. Green Chemistry, 2017, 19, 281-285.	9.0	88
27	Synthesis of Indole-2-carboxylate Derivatives via Palladium-Catalyzed Aerobic Amination of Aryl C–H Bonds. Organic Letters, 2016, 18, 3586-3589.	4.6	43
28	Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates. Nature Chemistry, 2016, 8, 1112-1119.	13.6	106
29	A call for industry to embrace green biopharma. Nature Biotechnology, 2016, 34, 234-235.	17.5	6
30	Practical Nonazide Synthesis of a <scp>d</scp> -Amino Acid Oxidase Inhibitor via a Sequential Erlenmeyer–Plöchl Reaction and Ligand-Free Copper(I) Amination Protocol. Organic Process Research and Development, 2014, 18, 198-204.	2.7	11
31	Copper-Catalyzed Synthesis of Indoles and Related Heterocycles in Renewable Solvents. ACS Sustainable Chemistry and Engineering, 2014, 2, 1359-1363.	6.7	11
32	Development of a tripartite solvent blend for sustainable chromatography. Green Chemistry, 2014, 16, 4102-4105.	9.0	8
33	Pharmaceutical Roundtable Study Demonstrates the Value of Continuous Manufacturing in the Design of Greener Processes. Organic Process Research and Development, 2013, 17, 1472-1478.	2.7	141
34	Chemoselective sp2-sp3 Cross-Couplings: Iron-Catalyzed Alkyl Transfer to Dihaloaromatics. Organic Letters, 2013, 15, 3698-3701.	4.6	45
35	Directed metalation and regioselective functionalization of 3-bromofuran and related heterocycles with NaHMDS. Tetrahedron Letters, 2012, 53, 166-169.	1.4	16
36	A ligand-free, copper-catalyzed cascade sequence to indole-2-carboxylic esters. Tetrahedron Letters, 2010. 51, 6549-6551.	1.4	29

STEFAN G KOENIG

#	Article	IF	CITATIONS
37	A Facile Deprotection of Secondary Acetamides. Organic Letters, 2009, 11, 433-436.	4.6	44
38	An Efficient Synthesis of Enamides from Ketones. Organic Letters, 2008, 10, 505-507.	4.6	76
39	Development of a Large-Scale Stereoselective Process for (1R,4S)-4-(3,4-Dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-amine Hydrochloride. Organic Process Research and Development, 2007, 11, 726-730.	2.7	30
40	A Transient Nâ^'O-Linked Pausonâ^'Khand Strategy for the Synthesis of the Deschloro Carbocyclic Core of the Palau'amines and Styloguanidines. Organic Letters, 2003, 5, 2203-2206.	4.6	56
41	AN IMPROVED SYNTHESIS OF (4S)-4,5-O-ISOPROPYLIDENEPENT- (2Z)-ENOATE. Synthetic Communications, 2002, 32, 1379-1383.	2.1	5
42	Synthesis of 3,4-substituted cyclopentenones via an intramolecular Pauson–Khand reaction of Nî—,O linked enynes. Tetrahedron Letters, 2000, 41, 9393-9396.	1.4	18