List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3294731/publications.pdf Version: 2024-02-01

		9234	13338
236	19,451	74	130
papers	citations	h-index	g-index
279	279	279	17290
			17250
all docs	docs citations	times ranked	citing authors

NINC YAN

#	Article	IF	CITATIONS
1	Sustainability: Don't waste seafood waste. Nature, 2015, 524, 155-157.	13.7	771
2	Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 2016, 9, 3314-3347.	15.6	556
3	Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nature Communications, 2017, 8, 16100.	5.8	545
4	Selective Degradation of Wood Lignin over Nobleâ€Metal Catalysts in a Twoâ€Step Process. ChemSusChem, 2008, 1, 626-629.	3.6	500
5	Ultrathin rhodium nanosheets. Nature Communications, 2014, 5, 3093.	5.8	428
6	A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. ACS Catalysis, 2014, 4, 1574-1583.	5.5	421
7	Transition metal nanoparticle catalysis in green solvents. Coordination Chemistry Reviews, 2010, 254, 1179-1218.	9.5	381
8	Stabilizing a Platinum ₁ Singleâ€Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angewandte Chemie - International Edition, 2016, 55, 8319-8323.	7.2	350
9	Hydrodeoxygenation of Ligninâ€Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with BrÃ,nsted Acidic Ionic Liquids. Angewandte Chemie - International Edition, 2010, 49, 5549-5553.	7.2	309
10	Downstream processing of lignin derived feedstock into end products. Chemical Society Reviews, 2020, 49, 5510-5560.	18.7	305
11	Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)–Thiolate Complexes to Evolution of Au ₂₅ Nanoclusters. Journal of the American Chemical Society, 2014, 136, 10577-10580.	6.6	294
12	Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coordination Chemistry Reviews, 2016, 322, 1-29.	9.5	281
13	One-Step Conversion of Cellobiose to C6-Alcohols Using a Ruthenium Nanocluster Catalyst. Journal of the American Chemical Society, 2006, 128, 8714-8715.	6.6	278
14	Balancing the Rate of Cluster Growth and Etching for Gramâ€5cale Synthesis of Thiolateâ€Protected Au ₂₅ Nanoclusters with Atomic Precision. Angewandte Chemie - International Edition, 2014, 53, 4623-4627.	7.2	276
15	Production of Primary Amines by Reductive Amination of Biomassâ€Derived Aldehydes/Ketones. Angewandte Chemie - International Edition, 2017, 56, 3050-3054.	7.2	243
16	Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chemistry, 2014, 16, 2432-2437.	4.6	239
17	Scalable and Precise Synthesis of Thiolated Au _{10–12} , Au ₁₅ , Au ₁₈ , and Au ₂₅ Nanoclusters via pH Controlled CO Reduction. Chemistry of Materials, 2013, 25, 946-952.	3.2	238
18	A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. Journal of Catalysis, 2014, 315, 67-74.	3.1	224

#	Article	IF	CITATIONS
19	Direct conversion of chitin into a N-containing furan derivative. Green Chemistry, 2014, 16, 2204-2212.	4.6	220
20	Selective Formic Acid Decomposition for Highâ€Pressure Hydrogen Generation: A Mechanistic Study. Chemistry - A European Journal, 2009, 15, 3752-3760.	1.7	219
21	Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929.	11.7	216
22	Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coordination Chemistry Reviews, 2018, 368, 60-79.	9.5	209
23	Shell Biorefinery: Dream or Reality?. Chemistry - A European Journal, 2016, 22, 13402-13421.	1.7	203
24	Expanding the Boundary of Biorefinery: Organonitrogen Chemicals from Biomass. Accounts of Chemical Research, 2021, 54, 1711-1722.	7.6	181
25	Rational control of nano-scale metal-catalysts for biomass conversion. Chemical Communications, 2016, 52, 6210-6224.	2.2	179
26	Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373, 315-320.	6.0	179
27	In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10, 1330.	5.8	177
28	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 20183-20191.	7.2	175
29	Aqueousâ€Phase Fischer–Tropsch Synthesis with a Ruthenium Nanocluster Catalyst. Angewandte Chemie - International Edition, 2008, 47, 746-749.	7.2	172
30	Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. Green Chemistry, 2013, 15, 1584.	4.6	169
31	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb ₂ O ₅ Catalyst. Angewandte Chemie - International Edition, 2021, 60, 5527-5535.	7.2	169
32	Catalytic amino acid production from biomass-derived intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5093-5098.	3.3	168
33	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie - International Edition, 2019, 58, 4934-4937.	7.2	164
34	Advances in the Rational Design of Rhodium Nanoparticle Catalysts: Control via Manipulation of the Nanoparticle Core and Stabilizer. ACS Catalysis, 2012, 2, 1057-1069.	5.5	163
35	Synthesis of a Sulfonated Twoâ€Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion. ChemSusChem, 2015, 8, 3208-3212.	3.6	163
36	Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chemical Society Reviews, 2020, 49, 3764-3782.	18.7	163

#	Article	IF	CITATIONS
37	Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong BrĄ̃nsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 2016, 28, 2659-2667.	3.2	160
38	Progress in La-doped SrTiO ₃ (LST)-based anode materials for solid oxide fuel cells. RSC Advances, 2014, 4, 118-131.	1.7	157
39	Transformation of Chitin and Waste Shrimp Shells into Acetic Acid and Pyrrole. ACS Sustainable Chemistry and Engineering, 2016, 4, 3912-3920.	3.2	154
40	Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water. Chemical Engineering Science, 2015, 123, 155-163.	1.9	153
41	Atomically Dispersed Pt ₁ –Polyoxometalate Catalysts: How Does Metal–Support Interaction Affect Stability and Hydrogenation Activity?. Journal of the American Chemical Society, 2019, 141, 8185-8197.	6.6	147
42	The support effect on the size and catalytic activity of thiolated Au ₂₅ nanoclusters as precatalysts. Nanoscale, 2015, 7, 6325-6333.	2.8	142
43	Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 5694-5707.	3.2	140
44	Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chemistry, 2017, 19, 2783-2792.	4.6	133
45	Electrostatic Stabilization of Single-Atom Catalysts by Ionic Liquids. CheM, 2019, 5, 3207-3219.	5.8	131
46	How Strong Is Hydrogen Bonding in Ionic Liquids? Combined X-ray Crystallographic, Infrared/Raman Spectroscopic, and Density Functional Theory Study. Journal of Physical Chemistry B, 2013, 117, 9094-9105.	1.2	130
47	Graphene Oxide Catalyzed Câ^'H Bond Activation: The Importance of Oxygen Functional Groups for Biaryl Construction. Angewandte Chemie - International Edition, 2016, 55, 3124-3128.	7.2	129
48	Pd–Pb Alloy Nanocrystals with Tailored Composition for Semihydrogenation: Taking Advantage of Catalyst Poisoning. Angewandte Chemie - International Edition, 2015, 54, 8271-8274.	7.2	125
49	Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets. Nature Communications, 2020, 11, 4899.	5.8	124
50	Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. Journal of Materials Chemistry A, 2017, 5, 8954-8963.	5.2	117
51	Biomass valorisation over polyoxometalate-based catalysts. Green Chemistry, 2021, 23, 18-36.	4.6	101
52	Conversion of chitin and N-acetyl- <scp>d</scp> -glucosamine into a N-containing furan derivative in ionic liquids. RSC Advances, 2015, 5, 20073-20080.	1.7	100
53	Highly Compressible and Hydrophobic Anisotropic Aerogels for Selective Oil/Organic Solvent Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 332-340.	3.2	100
54	Biphasic Hydrogenation over PVP Stabilized Rh Nanoparticles in Hydroxyl Functionalized Ionic Liquids. Inorganic Chemistry, 2008, 47, 7444-7446.	1.9	99

#	Article	IF	CITATIONS
55	Effect of Treatment Methods on Chitin Structure and Its Transformation into Nitrogenâ€Containing Chemicals. ChemPlusChem, 2015, 80, 1565-1572.	1.3	97
56	Toward the Shell Biorefinery: Processing Crustacean Shell Waste Using Hot Water and Carbonic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 5532-5542.	3.2	96
57	Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 2020, 10, 311-335.	5.5	96
58	Conversion of chitin derived N-acetyl- <scp>d</scp> -glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water. Green Chemistry, 2015, 17, 1024-1031.	4.6	94
59	Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark. Green Chemistry, 2014, 16, 3483-3493.	4.6	93
60	Acid-Catalyzed Chitin Liquefaction in Ethylene Glycol. ACS Sustainable Chemistry and Engineering, 2014, 2, 2081-2089.	3.2	93
61	Thermoresponsive polymers based on poly-vinylpyrrolidone: applications in nanoparticle catalysis. Chemical Communications, 2010, 46, 1631.	2.2	91
62	Ligninâ€Based Polyurethane: Recent Advances and Future Perspectives. Macromolecular Rapid Communications, 2021, 42, e2000492.	2.0	88
63	Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids: II. Rhodium-catalyzed hydrogenation of arenes. Journal of Catalysis, 2007, 250, 33-40.	3.1	87
64	Chitinâ€Derived Mesoporous, Nitrogenâ€Containing Carbon for Heavyâ€Metal Removal and Styrene Epoxidation. ChemPlusChem, 2015, 80, 1556-1564.	1.3	87
65	Sulfated Mesoporous Niobium Oxide Catalyzed 5-Hydroxymethylfurfural Formation from Sugars. Industrial & Engineering Chemistry Research, 2014, 53, 14225-14233.	1.8	85
66	High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Applied Catalysis B: Environmental, 2021, 281, 119471.	10.8	85
67	Catalytic Production of Alanine from Waste Glycerol. Angewandte Chemie - International Edition, 2020, 59, 2289-2293.	7.2	84
68	Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. Journal of Catalysis, 2019, 376, 57-67.	3.1	83
69	Harnessing the Wisdom in Colloidal Chemistry to Make Stable Singleâ€Atom Catalysts. Advanced Materials, 2018, 30, e1802304.	11.1	82
70	Nanometallic chemistry: deciphering nanoparticle catalysis from the perspective of organometallic chemistry and homogeneous catalysis. Dalton Transactions, 2013, 42, 13294.	1.6	81
71	Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals. Chinese Journal of Catalysis, 2018, 39, 1445-1452.	6.9	81
72	Stabilizing a Platinum ₁ Singleâ€Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angewandte Chemie, 2016, 128, 8459-8463.	1.6	80

#	Article	IF	CITATIONS
73	Mechanochemical Amorphization of α-Chitin and Conversion into Oligomers of <i>N</i> -Acetyl- <scp>d</scp> -glucosamine. ACS Sustainable Chemistry and Engineering, 2018, 6, 1662-1669.	3.2	79
74	Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicinâ€A from Chitin. ChemSusChem, 2018, 11, 532-535.	3.6	79
75	Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids. Green Chemistry, 2010, 12, 228.	4.6	78
76	Tuning the Chemoselectivity of Rh Nanoparticle Catalysts by Site-Selective Poisoning with Phosphine Ligands: The Hydrogenation of Functionalized Aromatic Compounds. ACS Catalysis, 2012, 2, 201-207.	5.5	78
77	Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7719-7728.	3.3	77
78	Acid-free regioselective aminocarbonylation of alkenes. Chemical Communications, 2014, 50, 7848-7851.	2.2	76
79	Atomically Dispersed Rhodium on Self-Assembled Phosphotungstic Acid: Structural Features and Catalytic CO Oxidation Properties. Industrial & Engineering Chemistry Research, 2017, 56, 3578-3587.	1.8	75
80	Integrating Biomass into the Organonitrogen Chemical Supply Chain: Production of Pyrrole and <scp>d</scp> â€Proline from Furfural. Angewandte Chemie - International Edition, 2020, 59, 19846-19850.	7.2	75
81	Development of Palladium Surfaceâ€Enriched Heteronuclear Au–Pd Nanoparticle Dehalogenation Catalysts in an Ionic Liquid. Chemistry - A European Journal, 2013, 19, 1227-1234.	1.7	73
82	Rhodium nanoparticle catalysts stabilized with a polymer that enhances stability without compromising activity. Chemical Communications, 2011, 47, 2529.	2.2	72
83	Effective deoxygenation of fatty acids over Ni(OAc) ₂ in the absence of H ₂ and solvent. Green Chemistry, 2015, 17, 4198-4205.	4.6	71
84	Formic acid-mediated liquefaction of chitin. Green Chemistry, 2016, 18, 5050-5058.	4.6	71
85	Ultralight, hydrophobic, anisotropic bamboo-derived cellulose nanofibrils aerogels with excellent shape recovery via freeze-casting. Carbohydrate Polymers, 2019, 208, 232-240.	5.1	70
86	Room temperature, near-quantitative conversion of glucose into formic acid. Green Chemistry, 2019, 21, 6089-6096.	4.6	68
87	pH-Sensitive Gold Nanoparticle Catalysts for the Aerobic Oxidation of Alcohols. Inorganic Chemistry, 2011, 50, 11069-11074.	1.9	67
88	Amide bond formation via C(sp ³)–H bond functionalization and CO insertion. Chemical Communications, 2014, 50, 341-343.	2.2	67
89	Production of Glucosamine from Chitin by Coâ€solvent Promoted Hydrolysis and Deacetylation. ChemCatChem, 2017, 9, 2790-2796.	1.8	66
90	Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism. Nature Communications, 2018, 9, 2931.	5.8	66

#	Article	IF	CITATIONS
91	Promoting heterogeneous catalysis beyond catalyst design. Chemical Science, 2020, 11, 1456-1468.	3.7	66
92	Defunctionalization of fructose and sucrose: Iron-catalyzed production of 5-hydroxymethylfurfural from fructose and sucrose. Catalysis Today, 2011, 175, 524-527.	2.2	65
93	Enhanced Conversion of Carbohydrates to the Platform Chemical 5â€Hydroxymethylfurfural Using Designer Ionic Liquids. ChemSusChem, 2014, 7, 1647-1654.	3.6	65
94	Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene. Science China Materials, 2020, 63, 982-992.	3.5	65
95	Demethylation of Wheat Straw Alkali Lignin for Application in Phenol Formaldehyde Adhesives. Polymers, 2016, 8, 209.	2.0	64
96	Production of Primary Amines by Reductive Amination of Biomassâ€Derived Aldehydes/Ketones. Angewandte Chemie, 2017, 129, 3096-3100.	1.6	64
97	Tuning the Accessibility and Activity of Au ₂₅ (SR) ₁₈ Nanocluster Catalysts through Ligand Engineering. Chemistry - A European Journal, 2016, 22, 14816-14820.	1.7	63
98	Identification of an Active NiCu Catalyst for Nitrile Synthesis from Alcohol. ACS Catalysis, 2019, 9, 6681-6691.	5.5	63
99	Producing Bark-based Polyols through Liquefaction: Effect of Liquefaction Temperature. ACS Sustainable Chemistry and Engineering, 2013, 1, 534-540.	3.2	62
100	A remarkable anion effect on palladium nanoparticle formation and stabilization in hydroxyl-functionalized ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 6026.	1.3	59
101	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie, 2019, 131, 4988-4991.	1.6	59
102	Enhanced Rate of Arene Hydrogenation with Imidazolium Functionalized Bipyridine Stabilized Rhodium Nanoparticle Catalysts. Inorganic Chemistry, 2011, 50, 717-719.	1.9	58
103	A remarkable solvent effect on reductive amination of ketones. Molecular Catalysis, 2018, 454, 87-93.	1.0	57
104	Efficient cleavage of aryl ether C–O linkages by Rh–Ni and Ru–Ni nanoscale catalysts operating in water. Chemical Science, 2018, 9, 5530-5535.	3.7	57
105	Recent Progress in Chemoselective Hydrogenation of α,β-Unsaturated Aldehyde to Unsaturated Alcohol Over Nanomaterials. Current Organic Chemistry, 2013, 17, 400-413.	0.9	57
106	Solvent-Enhanced Coupling of Sterically Hindered Reagents and Aryl Chlorides using Functionalized Ionic Liquids. Organometallics, 2009, 28, 937-939.	1.1	56
107	Soft, Oxidative Stripping of Alkyl Thiolate Ligands from Hydroxyapatiteâ€&upported Gold Nanoclusters for Oxidation Reactions. Chemistry - an Asian Journal, 2016, 11, 532-539.	1.7	55
108	A Metalâ€Free, Carbonâ€Based Catalytic System for the Oxidation of Lignin Model Compounds and Lignin. ChemPlusChem, 2014, 79, 825-834.	1.3	54

#	Article	IF	CITATIONS
109	Biobased Epoxy Synthesized from a Vanillin Derivative and Its Reinforcement Using Lignin-Containing Cellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2020, 8, 11215-11223.	3.2	54
110	Chitin hydrolysis in acidified molten salt hydrates. Green Chemistry, 2020, 22, 5096-5104.	4.6	54
111	Haber-independent, diversity-oriented synthesis of nitrogen compounds from biorenewable chitin. Green Chemistry, 2020, 22, 1978-1984.	4.6	53
112	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
113	Solubility adjustable nanoparticles stabilized by a novel PVP based family: synthesis, characterization and catalytic properties. Chemical Communications, 2009, , 4423.	2.2	49
114	Polyurethane foams derived from liquefied mountain pine beetleâ€infested barks. Journal of Applied Polymer Science, 2012, 123, 2849-2858.	1.3	49
115	Direct Conversion of Mono―and Polysaccharides into 5â€Hydroxymethylfurfural Using Ionic‣iquid Mixtures. ChemSusChem, 2016, 9, 2089-2096.	3.6	49
116	Production of organic acids from biomass resources. Current Opinion in Green and Sustainable Chemistry, 2016, 2, 54-58.	3.2	49
117	Popping of Graphite Oxide: Application in Preparing Metal Nanoparticle Catalysts. Advanced Materials, 2015, 27, 4688-4694.	11.1	48
118	Biobased Phenol Formaldehyde Resins Derived from Beetle-Infested Pine Barks—Structure and Composition. ACS Sustainable Chemistry and Engineering, 2013, 1, 91-101.	3.2	47
119	Direct aerobic oxidative homocoupling of benzene to biphenyl over functional porous organic polymer supported atomically dispersed palladium catalyst. Applied Catalysis B: Environmental, 2017, 209, 679-688.	10.8	47
120	One-Step Synthesis of N-Heterocyclic Compounds from Carbohydrates over Tungsten-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 11096-11104.	3.2	47
121	Ligands Modulate Reaction Pathway in the Hydrogenation of 4â€Nitrophenol Catalyzed by Gold Nanoclusters. ChemCatChem, 2018, 10, 395-402.	1.8	47
122	Insights into the Formation Mechanism of Rhodium Nanocubes. Journal of Physical Chemistry C, 2012, 116, 15076-15086.	1.5	46
123	Ag–Pd and CuO–Pd nanoparticles in a hydroxyl-group functionalized ionic liquid: synthesis, characterization and catalytic performance. Catalysis Science and Technology, 2015, 5, 1683-1692.	2.1	46
124	Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. Molecular Catalysis, 2019, 475, 110461.	1.0	46
125	Biobased Epoxidized Starch Wood Adhesives: Effect of Amylopectin and Amylose Content on Adhesion Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 17997-18005.	3.2	46
126	"Barking―up the right tree: biorefinery from waste stream to cyclic carbonate with immobilization of CO ₂ for non-isocyanate polyurethanes. Green Chemistry, 2020, 22, 6874-6888.	4.6	45

#	Article	IF	CITATIONS
127	Transformation of biomass via the selective hydrogenolysis of CO bonds by nanoscale metal catalysts. Current Opinion in Chemical Engineering, 2013, 2, 178-183.	3.8	42
128	Novel Catalytic Systems to Convert Chitin and Lignin into Valuable Chemicals. Catalysis Surveys From Asia, 2014, 18, 164-176.	1.0	42
129	Rh nanoparticles with NiO x surface decoration for selective hydrogenolysis of C O bond over arene hydrogenation. Journal of Molecular Catalysis A, 2016, 422, 188-197.	4.8	42
130	Zinc-doped silica/polyaniline core/shell nanoparticles towards corrosion protection epoxy nanocomposite coatings. Composites Part B: Engineering, 2021, 212, 108713.	5.9	41
131	Evaluation of ionic liquid soluble imidazolium tetrachloropalladate pre-catalysts in Suzuki coupling reactions. Catalysis Today, 2012, 183, 172-177.	2.2	40
132	Biomass Liquefaction and Alkoxylation: A Review of Structural Characterization Methods for Bio-based Polyols. Polymer Reviews, 2017, 57, 668-694.	5.3	39
133	Sorghum biomass: a novel renewable carbon source for industrial bioproducts. Biofuels, 2014, 5, 159-174.	1.4	38
134	Oxidant free conversion of alcohols to nitriles over Ni-based catalysts. Catalysis Science and Technology, 2019, 9, 86-96.	2.1	38
135	Facile Synthesis of a Phosphorus-Containing Sustainable Biomolecular Platform from Vanillin for the Production of Mechanically Strong and Highly Flame-Retardant Resins. ACS Sustainable Chemistry and Engineering, 2020, 8, 17417-17426.	3.2	38
136	Observing Singleâ€Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2021, 60, 4764-4773.	7.2	38
137	Simple preparation method for Mg–Al hydrotalcites as base catalysts. Journal of Molecular Catalysis A, 2016, 423, 347-355.	4.8	37
138	Transformation of CO2 by using nanoscale metal catalysts: cases studies on the formation of formic acid and dimethylether. Current Opinion in Chemical Engineering, 2018, 20, 86-92.	3.8	37
139	Facile one-pot synthesis of water-dispersible phosphate functionalized reduced graphene oxide toward high-performance energy storage devices. Chemical Communications, 2020, 56, 1373-1376.	2.2	37
140	Toward Functionalization of Thermoresponsive Poly(<i>N</i> -vinyl-2-pyrrolidone). Macromolecules, 2010, 43, 9972-9981.	2.2	36
141	Catalyst: Is the Amino Acid a New Frontier for Biorefineries?. CheM, 2019, 5, 739-741.	5.8	36
142	Mesoporous Silicaâ€Encaged Ultrafine Bimetallic Nanocatalysts for CO ₂ Hydrogenation to Formates. ChemCatChem, 2019, 11, 5093-5097.	1.8	35
143	Towards circular economy: integration of bio-waste into chemical supply chain. Current Opinion in Chemical Engineering, 2019, 26, 148-156.	3.8	35
144	Towards Rational Design of Nanoparticle Catalysis in Ionic Liquids. Catalysts, 2013, 3, 543-562.	1.6	34

#	Article	IF	CITATIONS
145	Enhancing performance of phosphorus containing vanillin-based epoxy resins by P–N non-covalently functionalized graphene oxide nanofillers. Composites Part B: Engineering, 2021, 207, 108585.	5.9	34
146	Oxidative Ringâ€Expansion of a Chitinâ€Derived Platform Enables Access to Unexplored 2â€Amino Sugar Chemical Space. European Journal of Organic Chemistry, 2019, 2019, 1355-1360.	1.2	33
147	Nanocomposite of Nitrogenâ€Đoped Graphene/Polyaniline for Enhanced Ammonia Gas Detection. Advanced Materials Interfaces, 2019, 6, 1900552.	1.9	32
148	Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO ₂ Catalyst. ChemSusChem, 2021, 14, 4330-4339.	3.6	31
149	Thermally responsive gold nanocatalysts based on a modified poly-vinylpyrrolidone. Journal of Molecular Catalysis A, 2013, 371, 29-35.	4.8	30
150	Ionic Liquid-Stabilized Single-Atom Rh Catalyst Against Leaching. CCS Chemistry, 2021, 3, 1814-1822.	4.6	30
151	Insight into the roles of ammonia during direct alcohol amination over supported Ru catalysts. Journal of Catalysis, 2021, 399, 121-131.	3.1	30
152	Aqueous-phase hydrogenation of alkenes and arenes: The growing role of nanoscale catalysts. Catalysis Today, 2015, 247, 96-103.	2.2	29
153	Lignin First: Confirming the Role of the Metal Catalyst in Reductive Fractionation. Jacs Au, 2021, 1, 729-733.	3.6	28
154	Rationalization of Solvation and Stabilization of Palladium Nanoparticles in Imidazoliumâ€Based Ionic Liquids by DFT and Vibrational Spectroscopy. ChemPhysChem, 2012, 13, 1781-1790.	1.0	27
155	Pd–Pb Alloy Nanocrystals with Tailored Composition for Semihydrogenation: Taking Advantage of Catalyst Poisoning. Angewandte Chemie, 2015, 127, 8389-8392.	1.6	27
156	Influence of the Anion on the Oxidation of 5â€Hydroxymethylfurfural by Using Ionicâ€Polymerâ€&upported Platinum Nanoparticle Catalysts. ChemPlusChem, 2018, 83, 19-23.	1.3	27
157	Rapid nanoparticle-catalyzed hydrogenations in triphasic millireactors with facile catalyst recovery. Green Chemistry, 2014, 16, 4654-4658.	4.6	26
158	Application of Ionic Liquids in the Downstream Processing of Lignocellulosic Biomass. Chimia, 2015, 69, 592.	0.3	26
159	Directly synthesized V-containing BEA zeolite: Acid-oxidation bifunctional catalyst enhancing C-alkylation selectivity in liquid-phase methylation of phenol. Chemical Engineering Journal, 2017, 328, 1031-1042.	6.6	25
160	Twoâ€Step Preparation of Diverse 3â€Amidofurans from Chitin. ChemistrySelect, 2019, 4, 10097-10099.	0.7	25
161	Identifying Key Descriptors for the Single-Atom Catalyzed CO Oxidation. CCS Chemistry, 2022, 4, 3296-3308.	4.6	25
162	Solvolytic Liquefaction of Bark: Understanding the Role of Polyhydric Alcohols and Organic Solvents on Polyol Characteristics. ACS Sustainable Chemistry and Engineering, 2016, 4, 851-861.	3.2	24

#	Article	IF	CITATIONS
163	A novel dihydrodifuropyridine scaffold derived from ketones and the chitin-derived heterocycle 3-acetamido-5-acetylfuran. Monatshefte Für Chemie, 2018, 149, 857-861.	0.9	24
164	Support effects in the de-methoxylation of lignin monomer 4-propylguaiacol over molybdenum-based catalysts. Fuel Processing Technology, 2020, 199, 106224.	3.7	23
165	From Wastes to Functions: A New Soybean Meal and Bark-Based Adhesive. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	23
166	Co-transesterification of waste cooking oil, algal oil and dimethyl carbonate over sustainable nanoparticle catalysts. Chemical Engineering Journal, 2021, 405, 127036.	6.6	23
167	Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water. Catalysis Science and Technology, 2021, 11, 3493-3500.	2.1	23
168	Addressing the quantitative conversion bottleneck in single-atom catalysis. Nature Communications, 2022, 13, 2807.	5.8	23
169	Solvation and stabilization of palladium nanoparticles in phosphonium-based ionic liquids: a combined infrared spectroscopic and density functional theory study. Physical Chemistry Chemical Physics, 2014, 16, 20672-20680.	1.3	22
170	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie, 2020, 132, 20358-20366.	1.6	22
171	Effect of the aging time of the precipitate on the activity of Cu/ZnO catalysts for alcohol-assisted low temperature methanol synthesis. Journal of Molecular Catalysis A, 2016, 418-419, 168-174.	4.8	21
172	Robust Conductive Hydrogel with Antibacterial Activity and UV-Shielding Performance. Industrial & Engineering Chemistry Research, 2020, 59, 17867-17875.	1.8	21
173	Lignin as a Key Component in Lignin-Containing Cellulose Nanofibrils for Enhancing the Performance of Polymeric Diphenylmethane Diisocyanate Wood Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 17165-17176.	3.2	21
174	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie, 2022, 134, .	1.6	21
175	NO2-catalyzed deep oxidation of methanol: Experimental and theoretical studies. Journal of Molecular Catalysis A, 2006, 252, 202-211.	4.8	20
176	In situ time-resolved DXAFS study of Rh nanoparticle formation mechanism in ethylene glycol at elevated temperature. Physical Chemistry Chemical Physics, 2012, 14, 2983.	1.3	20
177	Designed synthesis of MO _x (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, and Au nanoparticles supported on hierarchical CuO hollow structures. Nanoscale, 2016, 8, 19684-19695.	2.8	20
178	One‣tep Synthesis of 2â€Alkylâ€dioxolanes from Ethylene Glycol and Syngas. ChemSusChem, 2009, 2, 941-943.	3.6	19
179	Valorization of Renewable Carbon Resources for Chemicals. Chimia, 2015, 69, 120.	0.3	19
180	NiAg Catalysts for Selective Hydrogenolysis of the Lignin C-O Bond. Particle and Particle Systems Characterization, 2016, 33, 610-619.	1.2	19

#	Article	IF	CITATIONS
181	Integrating Biomass into the Organonitrogen Chemical Supply Chain: Production of Pyrrole and <scp>d</scp> â€Proline from Furfural. Angewandte Chemie, 2020, 132, 20018-20022.	1.6	19
182	An air-stable, reusable Ni@Ni(OH) ₂ nanocatalyst for CO ₂ /bicarbonate hydrogenation to formate. Nanoscale, 2021, 13, 8931-8939.	2.8	19
183	Electrostatic and Nonâ€covalent Interactions in Dicationic Imidazolium–Sulfonium Salts with Mixed Anions. Chemistry - A European Journal, 2014, 20, 4273-4283.	1.7	18
184	Transferring the biorenewable nitrogen present in chitin to several N-functional groups. Sustainable Chemistry and Pharmacy, 2019, 13, 100143.	1.6	18
185	Catalytic Production of Alanine from Waste Glycerol. Angewandte Chemie, 2020, 132, 2309-2313.	1.6	18
186	Advances in green synthesis and applications of graphene. Nano Research, 2021, 14, 3724-3743.	5.8	18
187	Hydride-induced ligand dynamic and structural transformation of gold nanoclusters during a catalytic reaction. Nanoscale, 2018, 10, 23113-23121.	2.8	17
188	Transformation of Corn Lignin into Sun Cream Ingredients. ChemSusChem, 2021, 14, 1586-1594.	3.6	17
189	The effect of calcination temperature on the electrochemical properties of La0.3Sr0.7Fe0.7Cr0.3O3â^'x (LSFC) perovskite oxide anode of solid oxide fuel cells (SOFCs). Sustainable Energy Technologies and Assessments, 2014, 8, 92-98.	1.7	16
190	Phospho-oxynitride Layer Protected Cobalt Phosphonitride Nanowire Arrays for High-Rate and Stable Supercapacitors. ACS Applied Energy Materials, 2019, 2, 616-626.	2.5	16
191	Rational Design of a Molecular Nanocatalystâ€Stabilizer that Enhances both Catalytic Activity and Nanoparticle Stability. ChemCatChem, 2012, 4, 1907-1910.	1.8	15
192	Construction of Acid–Base Synergetic Sites on Mgâ€bearing BEA Zeolites Triggers the Unexpected Lowâ€Temperature Alkylation of Phenol. ChemCatChem, 2017, 9, 1076-1083.	1.8	15
193	Designed Precursor for the Controlled Synthesis of Highly Active Atomic and Subâ€nanometric Platinum Catalysts on Mesoporous Silica. Chemistry - an Asian Journal, 2018, 13, 1053-1059.	1.7	15
194	One-pot production of phenazine from lignin-derived catechol. Green Chemistry, 2022, 24, 1224-1230.	4.6	15
195	Crystallisation of inorganic salts containing 18-crown-6 from ionic liquids. Inorganica Chimica Acta, 2010, 363, 504-508.	1.2	14
196	Fe–N–C single-atom catalysts with an axial structure prepared by a new design and synthesis method for ORR. New Journal of Chemistry, 2021, 45, 13004-13014.	1.4	14
197	Selective Hydrogenation of Cinnamaldehyde by Ionic Copolymer-Stabilized Pt Nanoparticles in Ionic Liquids. Chinese Journal of Catalysis, 2007, 28, 389-391.	6.9	12
198	Selectivity-Switchable Conversion of Chitin-Derived <i>N</i> -Acetyl- <scp>d</scp> -glucosamine into Commodity Organic Acids at Room Temperature. Industrial & Engineering Chemistry Research, 2021, 60, 3239-3248.	1.8	12

#	Article	IF	CITATIONS
199	Sustainable Shapeâ€Memory Polyurethane from Abietic Acid: Superior Mechanical Properties and Shape Recovery with Tunable Transition Temperatures. ChemSusChem, 2020, 13, 5749-5761.	3.6	11
200	Observing Singleâ€Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2021, 133, 4814-4823.	1.6	11
201	Effects of Reaction Conditions on Phenol Liquefaction of Beetle-infested Lodgepole Pine Barks. Current Organic Chemistry, 2013, 17, 1604-1616.	0.9	11
202	Performance-Improved Highly Integrated Uniaxial Tristate Hybrid Nanogenerator for Sustainable Mechanical Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 4119-4131.	4.0	11
203	Triphasic Segmented Flow Millireactors for Rapid Nanoparticle-Catalyzed Gas–Liquid Reactions — Hydrodynamic Studies and Reactor Modeling. Journal of Flow Chemistry, 2014, 4, 200-205.	1.2	10
204	An Integrated Process for <scp>l</scp> -Tyrosine Production from Sugarcane Bagasse. ACS Sustainable Chemistry and Engineering, 2021, 9, 11758-11768.	3.2	10
205	Unlocking the Potential of Photocatalysts in Biomass Refinery. CheM, 2020, 6, 2871-2873.	5.8	9
206	Highâ€performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. Canadian Journal of Chemical Engineering, 2020, 98, 2259-2293.	0.9	9
207	Propylsulfonic Acid-Functionalized Mesostructured Natural Rubber/Silica Nanocomposites as Promising Hydrophobic Solid Catalysts for Alkyl Levulinate Synthesis. Nanomaterials, 2022, 12, 604.	1.9	9
208	Poly(vinylidene fluoride)-Stabilized Black γ-Phase CsPbI ₃ Perovskite for High-Performance Piezoelectric Nanogenerators. ACS Omega, 2022, 7, 10559-10567.	1.6	9
209	Molecular Catalysis for the Chemistry of the future: a perspective. Molecular Catalysis, 2022, 522, 112233.	1.0	9
210	Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst. Frontiers in Chemistry, 2013, 1, 17.	1.8	8
211	Catalytic Conversion of Chitosan to Glucosaminic Acid by Tandem Hydrolysis and Oxidation. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
212	Highly Cross-Linked and Stable Shape-Memory Polyurethanes Containing a Planar Ring Chain Extender. ACS Applied Polymer Materials, 2020, 2, 5259-5268.	2.0	8
213	Excellent Low-Temperature Formaldehyde Decomposition Performance over Pt Nanoparticles Directly Loaded on Cellulose Triacetate. Industrial & Engineering Chemistry Research, 2020, 59, 21720-21728.	1.8	8
214	Recent Progress on Starch Maleate/Polylactic Acid Blends for Compostable Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 3-15.	3.2	8
215	Chemical Breakthrough Converts Cellulose into Ethanol. Trends in Chemistry, 2019, 1, 457-458.	4.4	7
216	Discovery of a Highly Active Catalyst for Hydrogenolysis of Câ^'O Bonds via Systematic, Multiâ€metallic Catalyst Screening. ChemCatChem, 2019, 11, 2743-2752.	1.8	7

#	Article	IF	CITATIONS
217	Introduction to green chemistry and reaction engineering. Reaction Chemistry and Engineering, 2020, 5, 2131-2133.	1.9	7
218	X-ray Absorption Spectroscopy: An Indispensable Tool to Study Single-Atom Catalysts. Synchrotron Radiation News, 2020, 33, 18-26.	0.2	7
219	Non-Faradaic Promotion of Ethylene Hydrogenation under Oscillating Potentials. Jacs Au, 2021, 1, 536-542.	3.6	7
220	Mesoporous silica-encaged ultrafine ceria–nickel hydroxide nanocatalysts for solar thermochemical dry methane reforming. Applied Physics Letters, 2022, 120, .	1.5	7
221	Pathways to food from CO2 via â€~green chemical farming'. Nature Sustainability, 2022, 5, 907-909.	11.5	7
222	When nanotechnology meets catalysis. Nanotechnology Reviews, 2013, 2, 485-486.	2.6	6
223	Novel Catalytic Materials for Energy and the Environment. ACS Sustainable Chemistry and Engineering, 2017, 5, 11124-11124.	3.2	6
224	Transformation of Seafood Wastes into Chemicals and Materials. , 2018, , 1-23.		6
225	Investigations on the ORR Catalytic Performance Attenuation of a 1D Fe Single-Atom Catalyst during the Discharge Process. Journal of Physical Chemistry C, 2022, 126, 4826-4835.	1.5	5
226	Producing aromatic amino acid from corn husk by using polyols as intermediates. Biomaterials, 2022, 287, 121661.	5.7	5
227	Transformation of Seafood Wastes into Chemicals and Materials. , 2019, , 461-482.		4
228	Rücktitelbild: Graphene Oxide Catalyzed Câ^'H Bond Activation: The Importance of Oxygen Functional Groups for Biaryl Construction (Angew. Chem. 9/2016). Angewandte Chemie, 2016, 128, 3290-3290.	1.6	3
229	Coverage-dependent formic acid oxidation reaction kinetics determined by oscillating potentials. Molecular Catalysis, 2021, 504, 111482.	1.0	3
230	Mechanically Robust, Degradable, Catalyst-Free Fully Bio-Based Shape Memory Polyurethane: Influence of a Novel Vanillin–Alaninol Chain Extender. ACS Sustainable Chemistry and Engineering, 2022, 10, 5203-5211.	3.2	3
231	Titanium dioxide hierarchical microspheres decorated with atomically dispersed platinum as an efficient photocatalyst for hydrogen evolution. Journal of Colloid and Interface Science, 2022, 623, 799-807.	5.0	3
232	Morphology and Structure Controls of Single-Atom Fe–N–C Catalysts Synthesized Using FePc Powders as the Precursor. Processes, 2021, 9, 109.	1.3	2
233	The Nature of Metal Catalysts in Ionic Liquids: Homogeneous vs Heterogeneous Reactions. Topics in Organometallic Chemistry, 2013, , 1-15.	0.7	1
234	Influence of the Anion on the Oxidation of 5-Hydroxymethylfurfural by Using Ionic-Polymer-Supported Platinum Nanoparticle Catalysts. ChemPlusChem, 2018, 83, 2-2.	1.3	0

#	Article	IF	CITATIONS
235	Molecular Design of 3D Porous Carbon Framework via Oneâ€6tep Organic Synthesis. ChemSusChem, 2021, 14, 3806-3809.	3.6	Ο
236	This special issue marks a historical moment for CHIMIA in its nearly 70-year history. Introduction. Chimia, 2015, 69, 97.	0.3	0