Xiaochuan Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3294218/publications.pdf

Version: 2024-02-01

713013 471061 1,538 21 17 21 citations h-index g-index papers 21 21 21 2681 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Materials, 2015, 14, 1286-1292.	13.3	334
2	Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14633-14638.	3.3	200
3	Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nature Nanotechnology, 2016, 11, 776-782.	15.6	160
4	Long Term Stability of Nanowire Nanoelectronics in Physiological Environments. Nano Letters, 2014, 14, 1614-1619.	4.5	126
5	Advances in nanowire bioelectronics. Reports on Progress in Physics, 2017, 80, 016701.	8.1	99
6	Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6694-6699.	3.3	85
7	Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues. Accounts of Chemical Research, 2018, 51, 309-318.	7.6	68
8	Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Advanced Healthcare Materials, 2021, 10, e2100646.	3.9	62
9	Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1259-1264.	3.3	59
10	Hydrogel Gate Graphene Field-Effect Transistors as Multiplexed Biosensors. Nano Letters, 2019, 19, 2620-2626.	4.5	52
11	Solvent-Dependent Cage Dynamics of Small Nonpolar Radicals: Lessons from the Photodissociation and Geminate Recombination of Alkylcobalamins. Journal of Physical Chemistry A, 2009, 113, 8513-8522.	1.1	47
12	Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
13	Crinkling Ultralong Carbon Nanotubes into Serpentines by a Controlled Landing Process. Advanced Materials, 2009, 21, 4158-4162.	11.1	38
14	Modularized Field-Effect Transistor Biosensors. Nano Letters, 2019, 19, 6658-6664.	4.5	38
15	Tuning the Diameter of Single-Walled Carbon Nanotubes by Temperature-Mediated Chemical Vapor Deposition. Journal of Physical Chemistry C, 2009, 113, 13051-13059.	1.5	32
16	Synergistically Detachable Microneedle Dressing for Programmed Treatment of Chronic Wounds. Advanced Healthcare Materials, 2022, 11, e2102180.	3.9	30
17	Three-dimensional transistor arrays for intra- and inter-cellular recording. Nature Nanotechnology, 2022, 17, 292-300.	15.6	30
18	Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. Nano Today, 2021, 41, 101308.	6.2	17

XIAOCHUAN DAI

#	Article	IF	CITATIONS
19	Biosynthetic Electronic Interfaces for Bridging Microbial and Inorganic Electron Transport. Nano Letters, 2019, 19, 8787-8792.	4.5	9
20	Sub-10 nm Nanolaminated Al2O3/HfO2 Coatings for Long-Term Stability of Cu Plasmonic Nanodisks in Physiological Environments. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31952-31961.	4.0	5
21	Bottom-Up Construction of Electrochemically Active Living Filters: From Graphene Oxide Mediated Formation of Bacterial Cables to 3D Assembly of Hierarchical Architectures. ACS Applied Bio Materials, 2020, 3, 7376-7381.	2.3	4