List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3294074/publications.pdf Version: 2024-02-01

		38660	54797
318	10,077	50	84
papers	citations	h-index	g-index
321	321	321	8192
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes. New England Journal of Medicine, 2020, 382, 140-151.	13.9	335
2	Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood, 2014, 123, 3239-3246.	0.6	298
3	Eprenetapopt (APR-246) and Azacitidine in <i>TP53</i> -Mutant Myelodysplastic Syndromes. Journal of Clinical Oncology, 2021, 39, 1584-1594.	0.8	278
4	The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood, 2016, 128, 2960-2975.	0.6	271
5	Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 60-87.	2.3	254
6	Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncology, The, 2017, 18, 112-121.	5.1	249
7	TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia, 2019, 33, 1747-1758.	3.3	195
8	<i>SF3B1</i> -mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood, 2020, 136, 157-170.	0.6	195
9	Myelodysplastic Syndromes. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 838-874.	2.3	181
10	Myelodysplastic Syndromes. Journal of the National Comprehensive Cancer Network: JNCCN, 2011, 9, 30-56.	2.3	177
11	Eprenetapopt Plus Azacitidine in <i>TP53</i> -Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone des Myélodysplasies (GFM). Journal of Clinical Oncology, 2021, 39, 1575-1583.	0.8	169
12	The First-in-Class Anti-CD47 Antibody Magrolimab (5F9) in Combination with Azacitidine Is Effective in MDS and AML Patients: Ongoing Phase 1b Results. Blood, 2019, 134, 569-569.	0.6	161
13	An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood, 2015, 125, 1857-1865.	0.6	153
14	Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN. Blood, 2017, 130, 1514-1522.	0.6	151
15	GM-CSF–dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood, 2013, 121, 5068-5077.	0.6	137
16	Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood, 2012, 120, 4945-4951.	0.6	126
17	Hypomethylating agents in relapsed and refractory AML: outcomes and their predictors in a large international patient cohort. Blood Advances, 2018, 2, 923-932.	2.5	114
18	<i>TP53</i> mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood, 2020, 136, 2812-2823.	0.6	113

#	Article	IF	CITATIONS
19	Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leukemia Research, 2013, 37, 609-613.	0.4	108
20	Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood, 2015, 125, 2649-2655.	0.6	107
21	The use of immunosuppressive therapy in MDS: clinical outcomes and their predictors in a large international patient cohort. Blood Advances, 2018, 2, 1765-1772.	2.5	100
22	Autoimmune diseases and myelodysplastic syndromes. American Journal of Hematology, 2016, 91, E280-3.	2.0	99
23	An International MDS/MPN Working Group's perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica, 2015, 100, 1117-1130.	1.7	97
24	Phase I First-in-Human Dose Escalation Study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia, 2021, 35, 3542-3550.	3.3	97
25	Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial. Lancet Haematology,the, 2018, 5, e63-e72.	2.2	95
26	Between a rux and a hard place: evaluating salvage treatment and outcomes in myelofibrosis after ruxolitinib discontinuation. Annals of Hematology, 2018, 97, 435-441.	0.8	95
27	Outcome of patients with lowâ€risk and intermediateâ€1â€risk myelodysplastic syndrome after hypomethylating agent failure: A report on behalf of the MDS Clinical Research Consortium. Cancer, 2015, 121, 876-882.	2.0	93
28	Personalized Prediction Model to Risk Stratify Patients With Myelodysplastic Syndromes. Journal of Clinical Oncology, 2021, 39, 3737-3746.	0.8	90
29	Phase 2, randomized, doubleâ€blind study of pracinostat in combination with azacitidine in patients with untreated, higherâ€risk myelodysplastic syndromes. Cancer, 2017, 123, 994-1002.	2.0	88
30	Somatic Mutations in MDS Patients Are Associated with Clinical Features and Predict Prognosis Independent of the IPSS-R: Analysis of Combined Datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood, 2015, 126, 907-907.	0.6	85
31	A Multi-Institution Phase I Trial of Ruxolitinib in Patients with Chronic Myelomonocytic Leukemia (CMML). Clinical Cancer Research, 2016, 22, 3746-3754.	3.2	84
32	NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Advances, 2019, 3, 922-933.	2.5	84
33	Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. Journal of Experimental Pharmacology, 2016, Volume 8, 11-19.	1.5	83
34	Venetoclax and hypomethylating agents (HMAs) induce high response rates in MDS, including patients after HMA therapy failure. Blood Advances, 2020, 4, 2866-2870.	2.5	81
35	Outcome of Lower-Risk Patients With Myelodysplastic Syndromes Without 5q Deletion After Failure of Erythropoiesis-Stimulating Agents. Journal of Clinical Oncology, 2017, 35, 1591-1597.	0.8	79
36	Expansion of Effector Memory Regulatory T Cells Represents a Novel Prognostic Factor in Lower Risk Myelodysplastic Syndrome. Journal of Immunology, 2012, 189, 3198-3208.	0.4	75

RAMI S KOMROKJI

#	Article	IF	CITATIONS
37	Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: Phase Ib results Journal of Clinical Oncology, 2020, 38, 7507-7507.	0.8	73
38	Outcomes after induction chemotherapy in patients with acute myeloid leukemia arising from myelodysplastic syndrome. Cancer, 2011, 117, 1463-1469.	2.0	71
39	Salvage chemotherapy regimens for acute myeloid leukemia: Is one better? Efficacy comparison between CLAG and MEC regimens. Leukemia Research, 2011, 35, 301-304.	0.4	70
40	Polycythemia Vera: An Appraisal of the Biology and Management 10 Years After the Discovery of <i>JAK2 V617F</i> . Journal of Clinical Oncology, 2015, 33, 3953-3960.	0.8	69
41	Survival following allogeneic transplant in patients with myelofibrosis. Blood Advances, 2020, 4, 1965-1973.	2.5	63
42	The myelodysplastic syndromes: Diagnosis, molecular biology and risk assessment. Hematology, 2005, 10, 258-269.	0.7	62
43	Hypoalbuminemia is an independent prognostic factor for overall survival in myelodysplastic syndromes. American Journal of Hematology, 2012, 87, 1006-1009.	2.0	60
44	Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal Response: Phase II Safety and Efficacy. Journal of Clinical Oncology, 2022, 40, 1671-1680.	0.8	60
45	Validation of the revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. American Journal of Hematology, 2013, 88, 566-570.	2.0	59
46	Randomized, Single-Blind, Multicenter Phase II Study of Two Doses of Imetelstat in Relapsed or Refractory Myelofibrosis. Journal of Clinical Oncology, 2021, 39, 2881-2892.	0.8	59
47	The Medalist Trial: Results of a Phase 3, Randomized, Double-Blind, Placebo-Controlled Study of Luspatercept to Treat Anemia in Patients with Very Low-, Low-, or Intermediate-Risk Myelodysplastic Syndromes (MDS) with Ring Sideroblasts (RS) Who Require Red Blood Cell (RBC) Transfusions. Blood, 2018, 132, 1-1.	0.6	57
48	Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: recommendations from a panel of international experts. Lancet Haematology,the, 2020, 7, e601-e612.	2.2	56
49	Phase II Study of the ALK5 Inhibitor Galunisertib in Very Low-, Low-, and Intermediate-Risk Myelodysplastic Syndromes. Clinical Cancer Research, 2019, 25, 6976-6985.	3.2	55
50	Combined treatment with lenalidomide and epoetin alfa in lower-risk patients with myelodysplastic syndrome. Blood, 2012, 120, 3419-3424.	0.6	54
51	Monocyte subset analysis accurately distinguishes CMML from MDS and is associated with a favorable MDS prognosis. Blood, 2017, 129, 1881-1883.	0.6	54
52	TIM-3 pathway dysregulation and targeting in cancer. Expert Review of Anticancer Therapy, 2021, 21, 523-534.	1.1	54
53	Myeloid/lymphoid neoplasms with <i>FGFR1</i> rearrangement. Leukemia and Lymphoma, 2018, 59, 1672-1676.	0.6	53
54	Myelodysplastic Syndromes Classification and Risk Stratification. Hematology/Oncology Clinics of North America, 2010, 24, 443-457.	0.9	51

#	Article	IF	CITATIONS
55	<i>TP53</i> suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16127-16132.	3.3	51
56	<scp>WT</scp> 1 vaccination in <scp>AML</scp> and <scp>MDS</scp> : A pilot trial with synthetic analog peptides. American Journal of Hematology, 2015, 90, 602-607.	2.0	50
57	Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica, 2016, 101, e320-e323.	1.7	49
58	Telomere length in myelodysplastic syndromes. Leukemia and Lymphoma, 2011, 52, 1528-1536.	0.6	48
59	Phase <scp>I</scp> clinical trial of oral rigosertib in patients with myelodysplastic syndromes. British Journal of Haematology, 2013, 162, 517-524.	1.2	48
60	Impact of High-Molecular-Risk Mutations on Transplantation Outcomes in Patients with Myelofibrosis. Biology of Blood and Marrow Transplantation, 2019, 25, 1142-1151.	2.0	48
61	A Phase I Study of Oral ARRY-614, a p38 MAPK/Tie2 Dual Inhibitor, in Patients with Low or Intermediate-1 Risk Myelodysplastic Syndromes. Clinical Cancer Research, 2015, 21, 985-994.	3.2	47
62	A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Advances, 2022, 6, 1855-1864.	2.5	47
63	Phase 1b/2 Combination Study of APR-246 and Azacitidine (AZA) in Patients with TP53 mutant Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML). Blood, 2018, 132, 3091-3091.	0.6	46
64	Poor Outcome of Patients With Myelodysplastic Syndrome After Azacitidine Treatment Failure. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 711-715.	0.2	44
65	Deletion 5q MDS: Molecular and therapeutic implications. Best Practice and Research in Clinical Haematology, 2013, 26, 365-375.	0.7	44
66	A Close Association of Autoimmune-Mediated Processes and Autoimmune Disorders with Chronic Myelomonocytic Leukemia: Observation from a Single Institution. Acta Haematologica, 2015, 133, 249-256.	0.7	44
67	Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study. Lancet Haematology,the, 2018, 5, e393-e402.	2.2	44
68	A phase 2 study of ATRA, arsenic trioxide, and gemtuzumab ozogamicin in patients with high-risk APL (SWOG 0535). Blood Advances, 2020, 4, 1683-1689.	2.5	43
69	Beyond hypomethylating agents failure in patients with myelodysplastic syndromes. Current Opinion in Hematology, 2014, 21, 123-130.	1.2	41
70	Baseline and serial molecular profiling predicts outcomes with hypomethylating agents in myelodysplastic syndromes. Blood Advances, 2021, 5, 1017-1028.	2.5	41
71	A phase 2 randomized multicenter study of 2 extended dosing schedules of oral ezatiostat in low to intermediate†risk myelodysplastic syndrome. Cancer, 2012, 118, 2138-2147.	2.0	40
72	Myelodysplastic Syndromes, Version 2.2015. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 261-272.	2.3	40

#	Article	IF	CITATIONS
73	Mutational landscape of myelodysplastic/myeloproliferative neoplasm–unclassifiable. Blood, 2018, 132, 2100-2103.	0.6	40
74	Outcome of Diffuse Large B-Cell Lymphoma in the United States Has Improved Over Time but Racial Disparities Remain: Review of SEER Data. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 257-260.	0.2	39
75	A call for action: Increasing enrollment of untreated patients with higherâ€risk myelodysplastic syndromes in firstâ€line clinical trials. Cancer, 2017, 123, 3662-3672.	2.0	39
76	Heterogeneous expression of cytokines accounts for clinical diversity and refines prognostication in CMML. Leukemia, 2019, 33, 205-216.	3.3	39
77	Validation of the MD Anderson Prognostic Risk Model for patients with myelodysplastic syndrome. Cancer, 2012, 118, 2659-2664.	2.0	38
78	There's Risk, and Then There's RISK: The Latest Clinical Prognostic Risk Stratification Models in Myelodysplastic Syndromes. Current Hematologic Malignancy Reports, 2013, 8, 351-360.	1.2	37
79	Biological basis for efficacy of activin receptor ligand traps in myelodysplastic syndromes. Journal of Clinical Investigation, 2020, 130, 582-589.	3.9	37
80	Lenalidomide Treatment for Lower Risk Nondeletion 5q Myelodysplastic Syndromes Patients Yields Higher Response Rates When Used Before Azacitidine. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, 705-710.	0.2	36
81	The efficacy of current prognostic models in predicting outcome of patients with myelodysplastic syndromes at the time of hypomethylating agent failure. Haematologica, 2016, 101, e224-e227.	1.7	36
82	Results from a Phase 2 Study of Navitoclax in Combination with Ruxolitinib in Patients with Primary or Secondary Myelofibrosis. Blood, 2019, 134, 671-671.	0.6	36
83	Phase 1 study of lenzilumab, a recombinant anti–human GM-CSF antibody, for chronic myelomonocytic leukemia. Blood, 2020, 136, 909-913.	0.6	36
84	A phase II multicenter rabbit anti-thymocyte globulin trial in patients with myelodysplastic syndromes identifying a novel model for response prediction. Haematologica, 2014, 99, 1176-1183.	1.7	35
85	Patients with myelodysplastic syndromes treated with azacitidine in clinical practice: the AVIDA [®] registry. Leukemia and Lymphoma, 2015, 56, 887-895.	0.6	34
86	Prognosis of patients with intermediate risk IPSSâ€R myelodysplastic syndrome indicates variable outcomes and need for models beyond IPSSâ€R. American Journal of Hematology, 2018, 93, 1245-1253.	2.0	34
87	Cladribine, cytarabine, filgrastim, and mitoxantrone (CLAG-M) compared to standard induction in acute myeloid leukemia from myelodysplastic syndrome after azanucleoside failure. Leukemia Research, 2014, 38, 443-446.	0.4	33
88	Disparity in perceptions of disease characteristics, treatment effectiveness, and factors influencing treatment adherence between physicians and patients with myelodysplastic syndromes. Cancer, 2014, 120, 1670-1676.	2.0	33
89	Imetelstat Is Effective Treatment for Patients with Intermediate-2 or High-Risk Myelofibrosis Who Have Relapsed on or Are Refractory to Janus Kinase Inhibitor Therapy: Results of a Phase 2 Randomized Study of Two Dose Levels. Blood, 2018, 132, 685-685.	0.6	33
90	Burkitt's leukemia with precursor B-cell immunophenotype and atypical morphology (atypical) Tj ETQq0 0 C) rgBT /Ove 0.4	erlock 10 Tf 50 32

6

561-566.

#	Article	IF	CITATIONS
91	Comparisons of commonly used front-line regimens on survival outcomes in patients aged 70 years and older with acute myeloid leukemia. Haematologica, 2020, 105, 398-406.	1.7	32
92	Value of cytogenetic abnormalities in post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a study of the MYSEC project. Haematologica, 2018, 103, e392-e394.	1.7	31
93	Mutational correlates of response to hypomethylating agent therapy in acute myeloid leukemia. Haematologica, 2016, 101, e457-e460.	1.7	30
94	Germ line tissues for optimal detection of somatic variants in myelodysplastic syndromes. Blood, 2018, 131, 2402-2405.	0.6	30
95	A Phase II Study to Determine the Safety and Efficacy of the Oral Inhibitor of Indoleamine 2,3-Dioxygenase (IDO) Enzyme INCB024360 inÂPatients with Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 157-161.	0.2	30
96	Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients With Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precision Oncology, 2019, 3, 1-11.	1.5	29
97	Eltrombopag Use in Patients With Chronic Myelomonocytic Leukemia (CMML): A Cautionary Tale. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S64-S66.	0.2	28
98	A comprehensive review of pacritinib in myelofibrosis. Future Oncology, 2015, 11, 2819-2830.	1.1	27
99	Outcomes of patients with myelodysplastic syndromes who achieve stable disease after treatment with hypomethylating agents. Leukemia Research, 2016, 41, 43-47.	0.4	27
100	Azacitidine in Lower-Risk Myelodysplastic Syndromes: A Meta-Analysis of Data from Prospective Studies. Oncologist, 2018, 23, 159-170.	1.9	27
101	Prospective CYP2C19 â€Guided Voriconazole Prophylaxis in Patients With Neutropenic Acute Myeloid Leukemia Reduces the Incidence of Subtherapeutic Antifungal Plasma Concentrations. Clinical Pharmacology and Therapeutics, 2020, 107, 563-570.	2.3	27
102	Prognostic significance of serial molecular annotation in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Leukemia, 2021, 35, 1145-1155.	3.3	27
103	Prognostication in Myelodysplastic Syndromes: Beyond the International Prognostic Scoring System (IPSS). American Journal of Medicine, 2013, 126, e25.	0.6	26
104	Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41. Cancer Research, 2016, 76, 3531-3540.	0.4	26
105	Evaluation of induction chemotherapies after hypomethylating agent failure in myelodysplastic syndromes and acute myeloid leukemia. Blood Advances, 2018, 2, 2063-2071.	2.5	26
106	Current state of prognostication and risk stratification in myelodysplastic syndromes. Current Opinion in Hematology, 2015, 22, 146-154.	1.2	25
107	Historical Views, Conventional Approaches, and Evolving Management Strategies for Myeloproliferative Neoplasms. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 424-434.	2.3	24
108	Validation of International Working Group response criteria in higherâ€risk myelodysplastic syndromes: A report on behalf of the MDS Clinical Research Consortium. Cancer Medicine, 2021, 10, 447-453.	1.3	24

#	Article	IF	CITATIONS
109	Biology and treatment of the 5q- syndrome. Expert Review of Hematology, 2011, 4, 61-69.	1.0	23
110	Comparing the prognostic value of risk stratifying models for patients with lowerâ€risk myelodysplastic syndromes: Is one model better?. American Journal of Hematology, 2015, 90, 1036-1040.	2.0	23
111	Differential response to hypomethylating agents based on sex: a report on behalf of the MDS Clinical Research Consortium (MDS CRC)*. Leukemia and Lymphoma, 2017, 58, 1325-1331.	0.6	23
112	Genetic Landscape of Acute Myeloid Leukemia Interrogated by Next-generation Sequencing: A Large Cancer Center Experience. Cancer Genomics and Proteomics, 2018, 15, 121-126.	1.0	23
113	An Open-Label, Phase 2, Dose-Finding Study of Sotatercept (ACE-011) in Patients with Low or Intermediate-1 (Int-1)-Risk Myelodysplastic Syndromes (MDS) or Non-Proliferative Chronic Myelomonocytic Leukemia (CMML) and Anemia Requiring Transfusion. Blood, 2014, 124, 3251-3251.	0.6	23
114	Lenalidomide for Treatment of Myelodysplastic Syndromes: Current Status and Future Directions. Hematology/Oncology Clinics of North America, 2010, 24, 377-388.	0.9	22
115	Management of Lower-Risk Myelodysplastic Syndromes:The Art and Evidence. Current Hematologic Malignancy Reports, 2011, 6, 145-153.	1.2	22
116	ETV6 and signaling gene mutations are associated with secondary transformation of myelodysplastic syndromes to chronic myelomonocytic leukemia. Blood, 2014, 123, 3675-3677.	0.6	22
117	Lenalidomide-Epoetin Alfa Versus Lenalidomide Monotherapy in Myelodysplastic Syndromes Refractory to Recombinant Erythropoietin. Journal of Clinical Oncology, 2021, 39, 1001-1009.	0.8	22
118	Role of Lenalidomide in the Treatment of Myelodysplastic Syndromes. Seminars in Oncology, 2011, 38, 648-657.	0.8	21
119	A multicenter, phase II study of maintenance azacitidine in older patients with acute myeloid leukemia in complete remission after induction chemotherapy. American Journal of Hematology, 2015, 90, 796-799.	2.0	21
120	Short- and long-term benefits of lenalidomide treatment in patients with lower-risk del(5q) myelodysplastic syndromes. Annals of Oncology, 2016, 27, 62-68.	0.6	21
121	Practical Measures of Clinical Benefit With Ruxolitinib Therapy: An Exploratory Analysis of COMFORT-I. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 479-487.	0.2	21
122	Phase I Clinical Trial of Selinexor in Combination with Daunorubicin and Cytarabine in Previously Untreated Poor-Risk Acute Myeloid Leukemia. Clinical Cancer Research, 2020, 26, 54-60.	3.2	21
123	Severe Hypoalbuminemia at Day 90 Predicts Worse Nonrelapse Mortality and Overall Survival after Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myelogenous Leukemia and Myelodysplastic Syndrome. Biology of Blood and Marrow Transplantation, 2011, 17, 384-393.	2.0	20
124	A phase 2, randomized, doubleâ€blind, multicenter study comparing siltuximab plus best supportive care (BSC) with placebo plus BSC in anemic patients with International Prognostic Scoring System lowâ€or intermediateâ€1–risk myelodysplastic syndrome. American Journal of Hematology, 2014, 89, E156-62.	2.0	20
125	A phase 2 trial of the oral smoothened inhibitor glasdegib in refractory myelodysplastic syndromes (MDS). Leukemia Research, 2019, 81, 56-61.	0.4	20
126	SOHO State of the Art & Next Questions: Myelodysplastic Syndromes: A New Decade. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 1-16.	0.2	20

#	Article	IF	CITATIONS
127	Pretransplantation 5-Azacitidine in High-Risk Myelodysplastic Syndrome. Biology of Blood and Marrow Transplantation, 2014, 20, 776-780.	2.0	19
128	Immunosuppressive Therapy: Exploring an Underutilized Treatment Option for Myelodysplastic Syndrome. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S44-S48.	0.2	19
129	ASXL1 frameshift mutations drive inferior outcomes in CMML without negative impact in MDS. Blood Cancer Journal, 2017, 7, 633.	2.8	19
130	Wide variations in blood product transfusion practices among providers who care for patients with acute leukemia in the United States. Transfusion, 2017, 57, 289-295.	0.8	19
131	Validation of the Khorana score in acute myeloid leukemia patients: a single-institution experience. Thrombosis Journal, 2019, 17, 13.	0.9	19
132	Higher-risk myelodysplastic syndromes with del(5q): is sequential azacitidine–lenalidomide combination the way to go?. Expert Review of Hematology, 2013, 6, 251-254.	1.0	18
133	Outcome of azacitidine treatment in patients with therapy-related myeloid neoplasms with assessment of prognostic risk stratification models. Leukemia Research, 2013, 37, 510-515.	0.4	18
134	TP53 and IDH2 Somatic Mutations Are Associated With Inferior Overall Survival After Allogeneic Hematopoietic Cell Transplantation for Myelodysplastic Syndrome. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 753-758.	0.2	18
135	Prognostic significance of MYC oncoprotein expression on survival outcome in patients with acute myeloid leukemia with myelodysplasia related changes (AML-MRC). Leukemia Research, 2019, 84, 106194.	0.4	18
136	Genetically inspired prognostic scoring system (GIPSS) outperforms dynamic international prognostic scoring system (DIPSS) in myelofibrosis patients. American Journal of Hematology, 2019, 94, 87-92.	2.0	18
137	Characterization of myelodysplastic syndromes (MDS) with T-cell large granular lymphocyte proliferations (LGL). Leukemia, 2020, 34, 3097-3099.	3.3	18
138	Therapy related CMML: a case report and review of the literature. International Journal of Hematology, 2009, 89, 699-703.	0.7	17
139	Results of a phase II study of lenalidomide and rituximab for refractory/relapsed chronic lymphocytic leukemia. Leukemia Research, 2016, 47, 78-83.	0.4	17
140	Favorable overall survival with imetelstat in relapsed/refractory myelofibrosis patients compared with real-world data. Annals of Hematology, 2022, 101, 139-146.	0.8	17
141	Phase II clinical study of erlotinib for treatment of myelodysplastic syndromes. American Journal of Hematology, 2014, 89, 809-812.	2.0	16
142	Treatment of Higher-Risk Myelodysplastic Syndromes After Failure of Hypomethylating Agents. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S56-S59.	0.2	16
143	Beliefs and practice patterns in hyperleukocytosis management in acute myeloid leukemia: a large U.S. web-based survey. Leukemia and Lymphoma, 2018, 59, 2723-2726.	0.6	16
144	Second primary malignancies in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 2233 patients. Cancer Medicine, 2019, 8, 4089-4092.	1.3	16

#	Article	IF	CITATIONS
145	Pacritinib, a Dual JAK2/FLT3 Inhibitor: An Integrated Efficacy and Safety Analysis Of Phase II Trial Data In Patients With Primary and Secondary Myelofibrosis (MF) and Platelet Counts â‰⊉00,000/µl. Blood, 2013, 122, 395-395.	0.6	16
146	Myelodysplastic syndromes: A view from where the sun rises and where the sun sets. Leukemia Research, 2006, 30, 1067-1068.	0.4	15
147	Outcome of patients with myelodysplastic syndromes in the Veterans Administration population. Leukemia Research, 2010, 34, 59-62.	0.4	15
148	Emerging biological therapies for the treatment of myelodysplastic syndromes. Expert Opinion on Emerging Drugs, 2016, 21, 283-300.	1.0	15
149	Validation of a post-hypomethylating agent failure prognostic model in myelodysplastic syndromes patients treated in a randomized controlled phase III trial of rigosertib vs. best supportive care. Blood Cancer Journal, 2017, 7, 644.	2.8	15
150	Finding a Jill for JAK: Assessing Past, Present, and Future JAK Inhibitor Combination Approaches in Myelofibrosis. Cancers, 2020, 12, 2278.	1.7	15
151	Luspatercept in Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2020, 34, 393-400.	0.9	15
152	Comparison of induction strategies and responses for acute myeloid leukemia patients after resistance to hypomethylating agents for antecedent myeloid malignancy. Leukemia Research, 2020, 93, 106367.	0.4	15
153	Personalized Medicine for TP53 Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2021, 22, 10105.	1.8	15
154	H3B-8800-G0001-101: A first in human phase I study of a splicing modulator in patients with advanced myeloid malignancies Journal of Clinical Oncology, 2017, 35, TPS7075-TPS7075.	0.8	15
155	Outcome of patients treated for myelodysplastic syndromes with 5q deletion after failure of lenalidomide therapy. Oncotarget, 2017, 8, 81926-81935.	0.8	15
156	Myelodysplastic Syndromes with Bone Marrow Fibrosis: An Update. Annals of Laboratory Medicine, 2022, 42, 299-305.	1.2	15
157	Clinical utility of lenalidomide in the treatment of myelodysplastic syndromes. Journal of Blood Medicine, 2014, 6, 1.	0.7	14
158	Evidence for Selective Benefit of Sequential Treatment With Hypomethylating Agents in Patients With Myelodysplastic Syndrome. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 211-214.	0.2	14
159	Impact of baseline cytogenetic findings and cytogenetic response on outcome of high-risk myelodysplastic syndromes and low blast count AML treated with azacitidine. Leukemia Research, 2017, 63, 72-77.	0.4	14
160	Clinical Outcomes With Ring Sideroblasts and SF3B1 Mutations in Myelodysplastic Syndromes: MDS Clinical Research Consortium Analysis. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 528-532.	0.2	14
161	Integrated Human and Murine Clinical Study Establishes Clinical Efficacy of Ruxolitinib in Chronic Myelomonocytic Leukemia. Clinical Cancer Research, 2021, 27, 6095-6105.	3.2	14
162	Phase 2 Study of Monotherapy Galunisertib (LY2157299 Monohydrate) in Very Low-, Low-, and Intermediate-Risk Patients with Myelodysplastic Syndromes. Blood, 2015, 126, 1669-1669.	0.6	14

#	Article	IF	CITATIONS
163	The clinical management of chronic myelomonocytic leukemia. Clinical Advances in Hematology and Oncology, 2014, 12, 172-8.	0.3	14
164	Imetelstat in intermediate-2 or high-risk myelofibrosis refractory to JAK inhibitor: IMpactMF phase III study design. Future Oncology, 2022, 18, 2393-2402.	1.1	14
165	Prognostic Factors and Risk Models in Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, S295-S299.	0.2	13
166	Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned. OncoTargets and Therapy, 2016, Volume 9, 4937-4957.	1.0	13
167	The Treatment Landscape of Myelofibrosis Before and After Ruxolitinib Approval. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, e45-e53.	0.2	13
168	Phenotype variability of patients with post polycythemia vera and post essential thrombocythemia myelofibrosis is associated with the time to progression from polycythemia vera and essential thrombocythemia. Leukemia Research, 2018, 69, 100-102.	0.4	13
169	Gender effect on phenotype and genotype in patients with post-polycythemia vera and post-essential thrombocythemia myelofibrosis: results from the MYSEC project. Blood Cancer Journal, 2018, 8, 89.	2.8	13
170	Decoding Bone Marrow Fibrosis in Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 324-328.	0.2	13
171	Combined Treatment with Lenalidomide (LEN) and Epoetin Alfa (EA) is Superior to Lenalidomide Alone in Patients with Erythropoietin (Epo)-Refractory, Lower Risk (LR) Non-Deletion 5q [Del(5q)] Myelodysplastic Syndrome (MDS): Results of the E2905 Intergroup Study-an ECOG-ACRIN Cancer Research Group Study, Grant CA180820, and the National Cancer Institute of the National Institutes of	0.6	13
172	Role of allogeneic transplantation in chronic myelomonocytic leukemia: an international collaborative analysis. Blood, 2022, 140, 1408-1418.	0.6	13
173	Longer-term benefit of luspatercept in transfusion-dependent lower-risk myelodysplastic syndromes withÂring sideroblasts. Blood, 2022, 140, 2170-2174.	0.6	13
174	Phase II pilot study of oral dasatinib in patients with higher-risk myelodysplastic syndrome (MDS) who failed conventional therapy. Leukemia Research, 2013, 37, 300-304.	0.4	12
175	Connect MDS/AML: design of the myelodysplastic syndromes and acute myeloid leukemia disease registry, a prospective observational cohort study. BMC Cancer, 2016, 16, 652.	1.1	12
176	The prognostic value of circulating myeloblasts in patients with myelodysplastic syndromes. Annals of Hematology, 2018, 97, 247-254.	0.8	12
177	Activin Receptor II Ligand Traps: New Treatment Paradigm for Low-Risk MDS. Current Hematologic Malignancy Reports, 2019, 14, 346-351.	1.2	12
178	The National MDS Natural History Study: design of an integrated data and sample biorepository to promote research studies in myelodysplastic syndromes. Leukemia and Lymphoma, 2019, 60, 3161-3171.	0.6	12
179	Myelodysplastic/Myeloproliferative Neoplasms Unclassified (MDS/MPN-U) Overlap: Can We Alter the Natural History?. Blood, 2016, 128, 3125-3125.	0.6	12
180	Myelodysplastic Syndromes: Recent Advancements in Risk Stratification and Unmet Therapeutic Challenges. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, 33, e256-e270.	1.8	12

#	Article	IF	CITATIONS
181	Neutrophil and platelet increases with luspatercept in lower-risk MDS: secondary endpoints from the MEDALIST trial. Blood, 2022, 139, 624-629.	0.6	12
182	The myelodysplastic syndromes: classification and prognosis. Psychophysiology, 2003, 2, 179-85.	1.1	12
183	The 5q- Syndrome: Biology and Treatment. Current Treatment Options in Oncology, 2011, 12, 354-368.	1.3	11
184	Efficacy and safety of lenalidomide in patients with myelodysplastic syndrome with chromosome 5q deletion. Therapeutic Advances in Hematology, 2012, 3, 105-116.	1.1	11
185	Advances in the Management of Myelofibrosis. Cancer Control, 2012, 19, 4-15.	0.7	11
186	Low participation rates and disparities in participation in interventional clinical trials for myelodysplastic syndromes. Cancer, 2020, 126, 4735-4743.	2.0	11
187	PTPN11 mutations are associated with poor outcomes across myeloid malignancies. Leukemia, 2021, 35, 286-288.	3.3	11
188	Ruxolitinib dose management as a key to long-term treatment success. International Journal of Hematology, 2016, 104, 420-429.	0.7	10
189	Current State of the Art: Management of Higher Risk Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S39-S43.	0.2	10
190	Bone marrow cellularity at day 14 is the most important predictive factor for response in patients with AML who require doubleâ€induction chemotherapy: Analysis from a large, single institution experience. American Journal of Hematology, 2017, 92, 232-237.	2.0	10
191	Overcoming barriers to treating iron overload in patients with lower-risk myelodysplastic syndrome. Critical Reviews in Oncology/Hematology, 2017, 117, 57-66.	2.0	10
192	Clonal Suppression of TP53 Mutant MDS and Oligoblastic AML with Hypomethylating Agent Therapy Improves Overall Survival. Blood, 2018, 132, 1817-1817.	0.6	10
193	ATRA, Arsenic Trioxide (ATO), and Gemtuzumab Ozogamicin (GO) Is Safe and Highly Effective in Patients with Previously Untreated High-Risk Acute Promyelocytic Leukemia (APL): Final Results of the SWOG/Alliance/ECOG S0535 Trial. Blood, 2016, 128, 896-896.	0.6	10
194	Outcome of patients treated for myelodysplastic syndromes without deletion 5q after failure of lenalidomide therapy. Oncotarget, 2017, 8, 37866-37874.	0.8	10
195	Health-Related Quality of Life Outcomes in Patients with Myelodysplastic Syndromes with Ring Sideroblasts Treated with Luspatercept in the MEDALIST Phase 3 Trial. Journal of Clinical Medicine, 2022, 11, 27.	1.0	10
196	Subsequent primary malignancies among multiple myeloma patients treated with or without lenalidomide. Leukemia and Lymphoma, 2017, 58, 560-568.	0.6	9
197	Challenges in Myelodysplastic/Myeloproliferative Neoplasms (MDS/MPN). Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 1-8.	0.2	9
198	Retrospective Analysis of the Clinical Use and Benefit of Lenalidomide and Thalidomide in Myelofibrosis. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e956-e960.	0.2	9

#	Article	IF	CITATIONS
199	A geno-clinical decision model for the diagnosis of myelodysplastic syndromes. Blood Advances, 2021, 5, 4361-4369.	2.5	9
200	Impact of TP53 gene Mutation Clearance and Conditioning Intensity on Outcome in MDS or AML Patients Prior to Allogeneic Stem Cell Transplantation. Blood, 2019, 134, 149-149.	0.6	9
201	Low-Dose Hypomethylating Agents (HMAs) Are Effective in Patients (Pts) with Low- or Intermediate-1-Risk Myelodysplastic Syndrome (MDS): A Report on Behalf of the MDS Clinical Research Consortium. Blood, 2015, 126, 94-94.	0.6	9
202	SF3B1-mutant CMML defines a predominantly dysplastic CMML subtype with a superior acute leukemia-free survival. Blood Advances, 2020, 4, 5716-5721.	2.5	9
203	Lenalidomide in Myelodysplastic Syndromes: An Erythropoiesis-Stimulating Agent or More?. Current Hematologic Malignancy Reports, 2010, 5, 9-14.	1.2	8
204	Myelodysplastic Syndromes in Adolescent Young Adults: One Institution's Experience. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S53-S56.	0.2	8
205	Low clinical trial accrual of patients with myelodysplastic syndromes: Causes and potential solutions. Cancer, 2018, 124, 4601-4609.	2.0	8
206	Impact of bone marrow fibrosis grade in postâ€polycythemia vera and postâ€essential thrombocythemia myelofibrosis: A study of the MYSEC group. American Journal of Hematology, 2020, 95, E1-E3.	2.0	8
207	MPN-038: Navitoclax in Combination with Ruxolitinib in Patients with Primary or Secondary Myelofibrosis: A Phase 2 Study. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S325.	0.2	8
208	Response to erythropoiesisâ€stimulating agents in patients with WHOâ€defined myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPNâ€RSâ€T). British Journal of Haematology, 2020, 189, e104-e108.	1.2	8
209	Comprehensive Kinase Profile of Pacritinib, a Non-Myelosuppressive JAK2 Kinase Inhibitor in Phase 3 Development in Primary and Post ET/PV Myelofibrosis. Blood, 2014, 124, 1874-1874.	0.6	8
210	What's in a Number? Examining the Prognostic and Predictive Importance of Platelet Count in Patients With Essential Thrombocythemia. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 1279-1284.	2.3	8
211	The clinical implications of the World Health Organization's classification of myelodysplastic syndromes. Psychophysiology, 2005, 4, 175-81.	1.1	8
212	Second Myeloid Malignancies in a Large Cohort of Patients With Chronic Lymphocytic Leukemia: AÂSingle Institution Experience. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S14-S18.	0.2	7
213	Clinical consequences of iron overload in patients with myelodysplastic syndromes: the case for iron chelation therapy. Expert Review of Hematology, 2018, 11, 577-586.	1.0	7
214	Partial Splenic Artery Embolization in 35 Cancer Patients: Results of a Single Institution Retrospective Study. Journal of Vascular and Interventional Radiology, 2020, 31, 584-591.	0.2	7
215	Validation of the international working group proposal for <i>SF3B1</i> mutant myelodysplastic syndromes. Blood, 2021, 138, 989-992.	0.6	7
216	Leukocytosis is associated with end organ damage and mortality in chronic myelomonocytic leukemia and can be mitigated by cytoreductive therapy. Leukemia Research, 2021, 109, 106640.	0.4	7

#	Article	IF	CITATIONS
217	Azacitidine Treatment for Lenalidomide (LEN)-Resistant Myelodysplastic Syndrome (MDS) with Del 5q. Blood, 2012, 120, 3833-3833.	0.6	7
218	Phase 1 Dose-Escalation/Expansion Study Of ARRY-614 In Patients With IPSS Low/Int-1 Risk Myelodysplastic Syndromes. Blood, 2013, 122, 387-387.	0.6	7
219	Validation of International Working Group (IWG) Response Criteria in Higher-Risk Myelodysplastic Syndromes (MDS): A Report on Behalf of the MDS Clinical Research Consortium (MDS CRC). Blood, 2015, 126, 909-909.	0.6	7
220	Is Serial Monitoring of Myeloid Mutations Clinically Relevant in Myelodysplastic Syndromes (MDS): A Report on Behalf of the MDS Clinical Research Consortium (CRC). Blood, 2016, 128, 297-297.	0.6	7
221	The role of pacritinib in the management of myelofibrosis. Expert Review of Hematology, 2014, 7, 325-332.	1.0	6
222	Novel and emerging therapies for the treatment of polycythemia vera. Expert Review of Hematology, 2015, 8, 101-113.	1.0	6
223	Validation of the Lower-Risk MD Anderson Prognostic Scoring System for Patients With Myelodysplastic Syndrome. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S60-S63.	0.2	6
224	Allogeneic Hematopoietic Stem Cell Transplantation Following the Use of Hypomethylating Agents among Patients with Relapsed or Refractory AML: Findings from an International Retrospective Study. Biology of Blood and Marrow Transplantation, 2018, 24, 1754-1758.	2.0	6
225	Concurrent mutations in other epigenetic modulators portend better prognosis in BCOR-mutated myelodysplastic syndrome. Journal of Clinical Pathology, 2020, 73, 209-212.	1.0	6
226	Clonal selection in therapyâ€related myelodysplastic syndromes and acute myeloid leukemia under azacitidine treatment. European Journal of Haematology, 2020, 104, 488-498.	1.1	6
227	Impact of obesity on survival of patients with myelodysplastic syndromes. Hematology, 2021, 26, 393-397.	0.7	6
228	What is the optimal time to initiate hypomethylating agents (HMAs) in higher risk myelodysplastic syndromes (MDSs)?. Leukemia and Lymphoma, 2021, 62, 2762-2767.	0.6	6
229	Lenalidomide for Treatment of Myelodysplastic Syndromes. Current Pharmaceutical Design, 2012, 18, 3198-3203.	0.9	6
230	MYC Overexpression is Associated with an Early Disease Progression from MDS to AML. Leukemia Research, 2021, 111, 106733.	0.4	6
231	Subsequent primary malignancies and acute myelogenous leukemia transformation among myelodysplastic syndrome patients treated with or without lenalidomide. Cancer Medicine, 2016, 5, 1694-1701.	1.3	5
232	A Phase II Study of CLAG Regimen Combined With Imatinib Mesylate for Relapsed or Refractory Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 902-907.	0.2	5
233	Integrating Genomics in Myelodysplastic Syndrome to Predict Outcomes After Allogeneic Hematopoietic Cell Transplantation. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 7-13.	0.2	5
234	Lenalidomide and Prednisone in Low and Intermediate-1 IPSS Risk, Non-Del(5q) Patients With Myelodysplastic Syndromes: Phase 2 Clinical Trial. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 251-254.	0.2	5

#	Article	IF	CITATIONS
235	Association of <scp>EZH</scp> 2 protein expression by immunohistochemistry in myelodysplasia related neoplasms with mutation status, cytogenetics and clinical outcomes. British Journal of Haematology, 2019, 184, 450-455.	1.2	5
236	Defining Acute Myeloid Leukemia Ontogeny in Older Patients. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 312-315.	0.2	5
237	Diagnostic and molecular testing patterns in patients with newly diagnosed acute myeloid leukemia in the Connect®MDS/AML Disease Registry. EJHaem, 2020, 1, 58-68.	0.4	5
238	Evolutionary action score identifies a subset of TP53 mutated myelodysplastic syndrome with favorable prognosis. Blood Cancer Journal, 2021, 11, 52.	2.8	5
239	Evaluating Predictors of Immune-Related Adverse Events and Response to Checkpoint Inhibitors in Myeloid Malignancies. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 421-424.e2.	0.2	5
240	Outcome Of Patients (pts) With Low and Intermediate-1 Risk Myelodysplastic Syndrome (MDS) After Hypomethylating Agent (HMA) Failure. Blood, 2013, 122, 388-388.	0.6	5
241	Prognosis and Outcomes in MDS-MPN Unclassifiable: Single Institution Experience of a Rare Disorder. Blood, 2015, 126, 1698-1698.	0.6	5
242	Phase 2 Trial of Smoothened (SMO) Inhibitor PF-04449913 (PF-04) in Refractory Myelodysplastic Syndromes (MDS). Blood, 2016, 128, 3174-3174.	0.6	5
243	Marrow ring sideroblasts are highly predictive for TP53 mutation in MDS with excess blasts. Leukemia, 2022, 36, 1189-1192.	3.3	5
244	Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, e467-e476.	0.2	5
245	Myelodysplastic/myeloproliferative neoplasms with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T): Mayo-Moffitt collaborative study of 158 patients. Blood Cancer Journal, 2022, 12, 26.	2.8	5
246	Luspatercept for myelodysplastic syndromes/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis. Leukemia, 2022, 36, 1432-1435.	3.3	5
247	Hemophagocytic Lymphohistiocytosis in Malignant Hematology: Uncommon but Should Not Be Forgotten?. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S147-S150.	0.2	4
248	Clinical prognostic factors and outcomes of essential thrombocythemia when transformed to myelodysplastic syndromes and acute myeloid leukemia. Leukemia Research, 2016, 42, 52-58.	0.4	4
249	Azacitidine Use for Myeloid Neoplasms. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, e147-e155.	0.2	4
250	Outcome of lower-risk myelodysplastic syndrome with ring sideroblasts (MDS-RS) after failure of erythropoiesis- stimulating agents. Leukemia Research, 2020, 99, 106472.	0.4	4
251	A sequential two-stage dose escalation study of eltrombopag in patients with myelodysplastic syndrome and thrombocytopenia after hypomethylating agent failure. Leukemia and Lymphoma, 2020, 61, 1901-1907.	0.6	4
252	SF3B1 Mutations Negatively Predict for Response to Immunosuppressive Therapy in Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 400-406.e2.	0.2	4

#	Article	IF	CITATIONS
253	Treatment options for lower-risk myelodysplastic syndromes. Where are we now?. Therapeutic Advances in Hematology, 2021, 12, 204062072098664.	1.1	4
254	JAK Be Nimble: Reviewing the Development of JAK Inhibitors and JAK Inhibitor Combinations for Special Populations of Patients with Myelofibrosis. Journal of Immunotherapy and Precision Oncology, 2021, 4, 129-141.	0.6	4
255	Dual pyroptotic biomarkers predict erythroid response in lower-risk non-del(5q) myelodysplastic syndromes treated with lenalidomide and recombinant erythropoietin. Haematologica, 2022, 107, 737-739.	1.7	4
256	Poor Outcome of Patients with Myelodysplastic Syndrome (MDS) After Azacitidine Treatment Failure. Blood, 2010, 116, 2913-2913.	0.6	4
257	Validation of the Revised International Prognostic Scoring System (R-IPSS) for Patients with Myelodysplastic Syndromes: Therapeutic Implications Blood, 2012, 120, 2816-2816.	0.6	4
258	Optimizing Dose Titration Of Ruxolitinib: The COMFORT-I Experience. Blood, 2013, 122, 4062-4062.	0.6	4
259	Characteristics and Outcome Of Myelodysplastic Syndromes (MDS) Patients With Autoimmune Diseases. Blood, 2013, 122, 746-746.	0.6	4
260	It is time to shift the treatment paradigm in myelodysplastic syndromes: A focus on novel developments and current investigational approaches exploring combinatorial therapy in high-risk MDS. Best Practice and Research in Clinical Haematology, 2021, 34, 101325.	0.7	4
261	CPX-351 Yields Similar Response and Survival Outcome in Younger and Older Patients With Secondary Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 774-779.	0.2	4
262	Increased genomic instability may contribute to the development of kinase domain mutations in chronic myeloid leukemia. International Journal of Hematology, 2014, 100, 567-574.	0.7	3
263	Impact of tobacco usage on disease outcome in myelodysplastic syndromes. Leukemia Research, 2015, 39, 673-678.	0.4	3
264	Adult T-Cell Leukemia/Lymphoma: Rarely Encountered in the United States. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S191-S194.	0.2	3
265	Myasthenia Gravis and Large Granular Lymphocytic Leukemia: a rare association. Leukemia Research Reports, 2020, 14, 100226.	0.2	3
266	Hypomethylating Agent Therapy in Myelodysplastic Syndromes With Chromosome 3 Abnormalities. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e597-e605.	0.2	3
267	Realâ€world diagnostic testing patterns for assessment of ring sideroblasts and SF3B1 mutations in patients with newly diagnosed lowerâ€risk myelodysplastic syndromes. International Journal of Laboratory Hematology, 2021, 43, 426-432.	0.7	3
268	Luspatercept in the treatment of lower-risk myelodysplastic syndromes. Future Oncology, 2021, 17, 1473-1481.	1.1	3
269	Treatment outcomes for patients with myelodysplastic syndrome/myeloproliferative neoplasms with ring sideroblasts and thrombocytosis. Leukemia and Lymphoma, 2022, 63, 199-204.	0.6	3
270	What Is the Optimal Time to Initiate Hypomethylating Agents (HMA) in Higher Risk Myelodysplastic Syndromes (MDS)?. Blood, 2018, 132, 3098-3098.	0.6	3

#	Article	IF	CITATIONS
271	Diagnosis of Myelodysplastic Syndromes and Related Conditions: Rates of Discordance between Local and Central Review in the NHLBI MDS Natural History Study. Blood, 2018, 132, 4370-4370.	0.6	3
272	A Sequential Two-Stage Dose Escalation Study Evaluating The Safety and Efficacy Of Eltrombopag In Thrombocytopenic Patients With Myelodysplastic Syndrome (MDS) Resistant To Hypomethylating Agents (HMA). Blood, 2013, 122, 2760-2760.	0.6	3
273	Optimal Treatment Order of Lenalidomide and Hypomethylating Agents for Lower-Risk Myelodysplastic Syndromes: A Report on Behalf of the MDS Clinical Research Consortium. Blood, 2016, 128, 4322-4322.	0.6	3
274	Mutations Highly Specific for Secondary AML Are Associated with Poor Outcomes in Patients with NPM1-Mutated ELN Favorable Risk AML. Blood, 2021, 138, 686-686.	0.6	3
275	<i>SF3B1</i> -mutant myelodysplastic syndrome/myeloproliferative neoplasms: a unique molecular and prognostic entity. Haematologica, 2022, 107, 1189-1192.	1.7	3
276	Splicing factor 3B subunit 1 <scp><i>(SF3B1)</i></scp> mutation in the context of <scp>therapyâ€related</scp> myelodysplastic syndromes. British Journal of Haematology, 2022, 198, 713-720.	1.2	3
277	What Is "WHO"? Myelodysplastic Syndromes Classification. Clinical Leukemia, 2008, 2, 20-27.	0.2	2
278	Multikinase inhibitors for treating high-risk myelodysplastic syndromes: can this be brought into clinical practice?. Expert Review of Hematology, 2013, 6, 485-487.	1.0	2
279	IMerge: A phase 3 study to evaluate imetelstat in transfusion-dependent subjects with IPSS low or intermediate-1 risk myelodysplastic syndromes that are relapsed/refractory to erythropoiesis-stimulating agent treatment Journal of Clinical Oncology, 2021, 39, TPS7056-TPS7056.	0.8	2
280	Comparing the Prognostic Value of Risk stratifying Models for Patients with Lower-Risk Myelodysplastic Syndromes: Is one model better?. American Journal of Hematology, 2015, 90, n/a-n/a.	2.0	2
281	Marrow Ring Sideroblasts Are Highly Predictive for TP53 Mutation in MDS with Excess Blasts. Blood, 2019, 134, 4244-4244.	0.6	2
282	Venous Thromboembolic Events in Patients with Diffuse Large B cell Non- Hodgkin's Lymphoma Blood, 2004, 104, 4542-4542.	0.6	2
283	Albumin Is a Prognostic Factor for Response and Overall Survival in Relapsed or Refractory Acute Myeloid Leukemia (AML) Blood, 2009, 114, 4685-4685.	0.6	2
284	Phase 2 Multicenter Trial of Rabbit Anti-Thymocyte Serotherapy In Myelodysplastic Syndrome: Rate of Hematological Improvement Associated with Pre-Treatment Disease Duration. Blood, 2010, 116, 602-602.	0.6	2
285	Characterization of Myelodysplastic Syndromes (MDS) with T-Cell Large Granular Lymphocyte Proliferations (LGL). Blood, 2016, 128, 113-113.	0.6	2
286	Clinical Utility of Molecular Profiling in Higher Risk MDS Treated with Azacitidine: Can We Tailor Therapy Accordingly?. Blood, 2016, 128, 1984-1984.	0.6	2
287	Myelodysplastic Syndromes: Recent Advancements in Risk Stratification and Unmet Therapeutic Challenges. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , e256-e270.	1.8	2
288	C-MYC Augments the Proliferation and Survival of Hematopoietic Stem Cells and Multipotent Progenitors to Drive Myeloproliferative Neoplasms. Blood, 2021, 138, 28-28.	0.6	2

#	Article	IF	CITATIONS
289	Comparison of different treatment strategies for blast-phase myeloproliferative neoplasms. Clinical Lymphoma, Myeloma and Leukemia, 2022, , .	0.2	2
290	Hypomethylating agent and venetoclax in patients with chronic myelomonocytic leukemia: Is the combination indeed better?. American Journal of Hematology, 2022, 97, .	2.0	2
291	Searching for a Light at the End of the Tunnel? Beyond Hypomethylating Agents in Myelodysplastic Syndromes. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e345-e352.	1.8	1
292	Driver mutationâ€specific clinical and genomic correlates differ between primary and secondary myelofibrosis. American Journal of Hematology, 2019, 94, E314-E317.	2.0	1
293	Fluorescence in Situ Hybridization (FISH) Utility for Risk Score Assessment in Patients With MDS With Normal Metaphase Karyotype. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, e52-e56.	0.2	1
294	Phase I Study of Cladribine, Cytarabine (Ara-C), Granulocyte Colony Stimulating Factor (G-CSF) (CLAG) Tj ETQq0 C AML Blood, 2006, 108, 1958-1958.	0 rgBT /0 0.6	Overlock 10 7 1
295	Tobacco Use Influences Disease Outcome and AML Potential in Myelodysplastic Syndromes,. Blood, 2011, 118, 3790-3790.	0.6	1
296	Conservative Management Vs. Allogeneic Hematopoietic Cell Transplantation For Polycythemia Vera: A Systematic Review and Decision-Analysis. Blood, 2013, 122, 5372-5372.	0.6	1
297	Subsequent Primary Malignancies Among Multiple Myeloma Patients Treated with or without Lenalidomide. Blood, 2014, 124, 2129-2129.	0.6	1
298	TP53 and IDH2 Somatic Mutations Are Associated with Poor Outcomes Following Allogeneic Hematopoietic Cell Transplantation for Myelodysplastic Syndrome. Blood, 2015, 126, 4382-4382.	0.6	1
299	Myelodysplastic Syndrome. , 2012, , 1200-1203.		1
300	Phase 2 Trial of the Farnesyltransferase Inhibitor Tipifarnib in Previously Untreated Older Adults with AML and Baseline Presence of a Specific 2-Gene Expression Signature Ratio. Blood, 2012, 120, 1508-1508.	0.6	1
301	Differential prognostic impact of IDH1 and IDH2 mutations in chronic myelomonocytic leukemia. Leukemia, 2022, 36, 1693-1696.	3.3	1
302	Prognostic scoring systems and risk stratification in myelodysplastic syndrome: focus on integration of molecular profile. Leukemia and Lymphoma, 2021, , 1-11.	0.6	1
303	Who is WHO in myelodysplastic syndromes? Clinical implications of the WHO classification. Current Hematologic Malignancy Reports, 2006, 1, 9-15.	1.2	0
304	Use of eltrombopag for treatment of myelodysplastic syndromes. Lancet Haematology,the, 2017, 4, e99-e100.	2.2	0
305	Somatic Sequencing Identifies Trametinib-Responsive Myelodysplastic Syndrome and Finds Acquired Clonal Hematopoiesis of Indeterminate Potential. JCO Precision Oncology, 2018, 2, 0-0.	1.5	0
306	Performance of the Medical Research Council (MRC) and the Leukemia Research Foundation (LRF) score in predicting survival benefit with hypomethylating agent use in patients with relapsed or refractory acute myeloid leukemia. Leukemia and Lymphoma, 2019, 60, 246-249.	0.6	0

#	Article	IF	CITATIONS
307	Molecular aberrations in myelodysplastic syndromes. Advances in Cell and Gene Therapy, 2020, 4, e83.	0.6	0
308	Traipsing Through Muddy Waters. Hematology/Oncology Clinics of North America, 2021, 35, 337-352.	0.9	0
309	Stepping out of antiquity: An update on emerging drugs for the treatment of polycythemia vera. Expert Opinion on Emerging Drugs, 2021, 26, 209-218.	1.0	0
310	Salvage Chemotherapy Regimens for Acute Myeloid Leukemia: Is One Better? Blood, 2009, 114, 1022-1022.	0.6	0
311	Comparable Efficacy and Safety with Voriconazole or Posaconazole as Primary Antifungal Prophylaxis in Acute Myeloid Leukemia (AML) Patients Receiving Induction Chemotherapy Blood, 2009, 114, 2059-2059.	0.6	0
312	Importance of T-Cell Proliferative Stress In Myelodysplastic Syndrome. Blood, 2010, 116, 2939-2939.	0.6	0
313	Outcomes in Patients with Acute Myeloid Leukemia Preceded by Breast Cancer. Blood, 2012, 120, 4316-4316.	0.6	0
314	Myelodysplastic Syndrome. , 2019, , 1-21.		0
315	Myelodysplastic Syndrome. , 2020, , 479-499.		0
316	COVID-19 Outcomes Among Participants in the NHLBI Myelodysplastic Syndromes (MDS) Natural History Study. Blood, 2021, 138, 2611-2611.	0.6	0
317	SF3B1 Mutations and Not TP53 Are Associated with Poor Outcomes in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Blood, 2020, 136, 25-26.	0.6	0
318	Searching for a Light at the End of the Tunnel? Beyond Hypomethylating Agents in Myelodysplastic Syndromes. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 36, e345-e352.	1.8	0