
Patrycja Puchalska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3293388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ketone body oxidation increases cardiac endothelial cell proliferation. EMBO Molecular Medicine, 2022, 14, e14753.	3.3	31
2	Artifactual FA dimers mimic FAHFA signals in untargeted metabolomics pipelines. Journal of Lipid Research, 2022, 63, 100201.	2.0	9
3	Acute aerobic exercise reveals that FAHFAs distinguish the metabolomes of overweight and normal-weight runners. JCI Insight, 2022, 7, .	2.3	11
4	Determination of ketone bodies in biological samples via rapid UPLC-MS/MS. Talanta, 2021, 225, 122048.	2.9	24
5	Diminished ketone interconversion, hepatic TCA cycle flux, and glucose production in D-β-hydroxybutyrate dehydrogenase hepatocyte-deficient mice. Molecular Metabolism, 2021, 53, 101269.	3.0	17
6	Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annual Review of Nutrition, 2021, 41, 49-77.	4.3	81
7	Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nature Metabolism, 2020, 2, 1248-1264.	5.1	87
8	Ketogenic therapies for lymphedema?. Nature Metabolism, 2019, 1, 656-657.	5.1	3
9	Application of Stable Isotope Labels for Metabolomics in Studies in Fatty Liver Disease. Methods in Molecular Biology, 2019, 1996, 259-272.	0.4	4
10	Hepatocyte-Macrophage Acetoacetate Shuttle Protects against Tissue Fibrosis. Cell Metabolism, 2019, 29, 383-398.e7.	7.2	87
11	Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments. IScience, 2018, 9, 298-313.	1.9	53
12	Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight, 2018, 3, .	2.3	51
13	Allergenome characterization of the mosquito <i>Aedes aegypti</i> . Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1499-1509.	2.7	23
14	Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metabolism, 2017, 25, 262-284.	7.2	965
15	Advances in the Determination of Bioactive Peptides in Foods. , 2017, , 24-53.		1
16	Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading. Journal of Lipid Research, 2016, 57, 574-586.	2.0	34
17	Food Traceability. , 2015, , 289-296.		0
18	Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) stones. Journal of Functional Foods, 2015, 19, 376-384.	1.6	35

PATRYCJA PUCHALSKA

#	Article	IF	CITATIONS
19	Isolation and Characterization of Peptides with Antihypertensive Activity in Foodstuffs. Critical Reviews in Food Science and Nutrition, 2015, 55, 521-551.	5.4	67
20	Development of a capillary high performance liquid chromatography–ion trap-mass spectrometry method for the determination of VLIVP antihypertensive peptide in soybean crops. Journal of Chromatography A, 2014, 1338, 85-91.	1.8	14
21	Isolation and identification of antioxidant peptides from commercial soybean-based infant formulas. Food Chemistry, 2014, 148, 147-154.	4.2	55
22	Identification of native angiotensin-I converting enzyme inhibitory peptides in commercial soybean based infant formulas using HPLC-Q-ToF-MS. Food Chemistry, 2014, 157, 62-69.	4.2	31
23	Development of a high-performance liquid chromatography–electrospray ionization-quadrupole-time-of-flight-mass spectrometry methodology for the determination of three highly antihypertensive peptides in maize crops. Journal of Chromatography A, 2013, 1285, 69-77.	1.8	18
24	Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta, 2013, 106, 328-349.	2.9	143
25	Development of a reversed-phase high-performance liquid chromatography analytical methodology for the determination of antihypertensive peptides in maize crops. Journal of Chromatography A, 2012, 1234, 64-71.	1.8	15
26	Enantioseparation of amino acids and αâ€hydroxy acids on ligandâ€exchange continuous beds by capillary electrochromatography. Electrophoresis, 2010, 31, 1517-1520.	1.3	12
27	Determination of Trigonelline in Seeds and Vegetable Oils by Capillary Electrophoresis as a Novel Marker for the Detection of Adulterations in Olive Oils. Journal of Agricultural and Food Chemistry, 2010, 58, 7489-7496.	2.4	23