Youxing Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292869/publications.pdf Version: 2024-02-01

Υουχικς Ιωκς

#	Article	IF	CITATIONS
1	Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel. Neuron, 2022, 110, 86-95.e5.	3.8	22
2	Structural biology of cation channels important for lysosomal calcium release. Cell Calcium, 2022, 101, 102519.	1.1	5
3	Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P ₂ and rapamycin. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
4	Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron, 2021, 109, 1302-1313.e4.	3.8	41
5	TMEM120A is a coenzyme A-binding membrane protein with structural similarities to ELOVL fatty acid elongase. ELife, 2021, 10, .	2.8	20
6	Voltage-gating and cytosolic Ca ²⁺ activation mechanisms of <i>Arabidopsis</i> two-pore channel AtTPC1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
7	Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations. ELife, 2020, 9,	2.8	46
8	Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter. ELife, 2020, 9, .	2.8	34
9	Ca2+-regulated Ca2+ channels with an RCK gating ring control plant symbiotic associations. Nature Communications, 2019, 10, 3703.	5.8	34
10	Structural Mechanism of EMRE-Dependent Gating of the Human Mitochondrial Calcium Uniporter. Cell, 2019, 177, 1252-1261.e13.	13.5	108
11	Structural mechanisms of phospholipid activation of the human TPC2 channel. ELife, 2019, 8, .	2.8	103
12	Structural and functional characterization of an otopetrin family proton channel. ELife, 2019, 8, .	2.8	20
13	Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature, 2018, 556, 130-134.	13.7	153
14	LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature, 2018, 562, 605-609.	13.7	172
15	Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature, 2018, 559, 570-574.	13.7	125
16	Tuning the ion selectivity of two-pore channels. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1009-1014.	3.3	106
17	Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature, 2017, 550, 415-418.	13.7	244
18	The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Nature, 2017, 547, 472-475.	13.7	57

YOUXING JIANG

#	Article	IF	CITATIONS
19	Structures of the calcium-activated, non-selective cation channel TRPM4. Nature, 2017, 552, 205-209.	13.7	158
20	Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nature Structural and Molecular Biology, 2016, 23, 590-599.	3.6	75
21	Electrophysiological characterization of the archaeal transporter NCX_Mj using solid supported membrane technology. Journal of General Physiology, 2016, 147, 485-496.	0.9	16
22	Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature, 2016, 531, 196-201.	13.7	216
23	A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome. Molecular Cell, 2015, 58, 845-853.	4.5	108
24	Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide–gated channels. Journal of General Physiology, 2015, 146, 255-263.	0.9	1
25	Structural and Mechanistic Roles of Novel Chemical Ligands on the SdiA Quorum-Sensing Transcription Regulator. MBio, 2015, 6, .	1.8	81
26	The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K. Journal of General Physiology, 2014, 144, 181-192.	0.9	16
27	Lipopolysaccharide assembly in the bacterial outer membrane revealed by X-ray crystallography. Science China Life Sciences, 2014, 57, 954-956.	2.3	0
28	Functional Characterization of Bacterial NCx by Surface Supported Membrane Technology. Biophysical Journal, 2014, 106, 581a.	0.2	0
29	A motif in LILRB2 critical for Angptl2 binding and activation. Blood, 2014, 124, 924-935.	0.6	68
30	Sodium and potassium competition in potassium-selective and non-selective channels. Nature Communications, 2013, 4, 2721.	5.8	55
31	The cardiac Na+-Ca2+ exchanger has two cytoplasmic ion permeation pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7500-7505.	3.3	21
32	Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger. Science, 2012, 335, 686-690.	6.0	228
33	Distinct gating mechanisms revealed by the structures of a multi-ligand gated K+ channel. ELife, 2012, 1, e00184.	2.8	23
34	Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 598-602.	3.3	105
35	Crucial Points within the Pore as Determinants of K+ Channel Conductance and Gating. Journal of Molecular Biology, 2011, 411, 27-35.	2.0	18
36	Crystal structure of a potassium ion transporter, TrkH. Nature, 2011, 471, 336-340.	13.7	120

YOUXING JIANG

#	Article	IF	CITATIONS
37	Structural studies of ion selectivity in tetrameric cation channels. Journal of General Physiology, 2011, 137, 397-403.	0.9	38
38	Protein interactions central to stabilizing the K ⁺ channel selectivity filter in a four-sited configuration for selective K ⁺ permeation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16634-16639.	3.3	41
39	Structural studies of ion permeation and Ca ²⁺ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 592-597.	3.3	37
40	Novel insights into K+ selectivity from high-resolution structures of an open K+ channel pore. Nature Structural and Molecular Biology, 2010, 17, 1019-1023.	3.6	122
41	Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature, 2010, 466, 393-397.	13.7	199
42	S. aureus MscL Is a Pentamer In Vivo but of Variable Stoichiometries In Vitro: Implications for Detergent-Solubilized Membrane Proteins. PLoS Biology, 2010, 8, e1000555.	2.6	60
43	High-resolution structure of the open NaK channel. Nature Structural and Molecular Biology, 2009, 16, 30-34.	3.6	120
44	Structural analysis of ion selectivity in the NaK channel. Nature Structural and Molecular Biology, 2009, 16, 35-41.	3.6	91
45	Insights into the Ion Selectivity Mechanism of CNG Channels from Mutants of NaK: Structural and Functional Studies. Biophysical Journal, 2009, 96, 671a.	0.2	0
46	Structural insight into Ca ²⁺ specificity in tetrameric cation channels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15334-15339.	3.3	37
47	Gating and Inward Rectifying Properties of the MthK K+ Channel with and without the Gating Ring. Journal of General Physiology, 2007, 129, 109-120.	0.9	54
48	Crystal Structures of a Ligand-free MthK Gating Ring: Insights into the Ligand Gating Mechanism of K+ Channels. Cell, 2006, 126, 1161-1173.	13.5	99
49	Atomic structure of a Na+- and K+-conducting channel. Nature, 2006, 440, 570-574.	13.7	222
50	Structures of the MthK RCK Domain and the Effect of Ca2+ on Gating Ring Stability. Journal of Biological Chemistry, 2005, 280, 41716-41724.	1.6	55
51	Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature, 2003, 422, 180-185.	13.7	211
52	X-ray structure of a voltage-dependent K+ channel. Nature, 2003, 423, 33-41.	13.7	1,781
53	The principle of gating charge movement in a voltage-dependent K+ channel. Nature, 2003, 423, 42-48.	13.7	784
54	Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 2002, 417, 515-522.	13.7	1,325

YOUXING JIANG

#	Article	IF	CITATIONS
55	The open pore conformation of potassium channels. Nature, 2002, 417, 523-526.	13.7	1,160
56	Structure of the RCK Domain from the E. coli K+ Channel and Demonstration of Its Presence in the Human BK Channel. Neuron, 2001, 29, 593-601.	3.8	290
57	The Barium Site in a Potassium Channel by X-Ray Crystallography. Journal of General Physiology, 2000, 115, 269-272.	0.9	192
58	Crystal structure of the EF-Tu˙EF-Ts complex from Thermus thermophilus. Nature Structural Biology, 1997, 4, 650-656.	9.7	108