## Gokulan Ravindiran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292863/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biodecolorization of Reactive Red 120 in batch and packed bed column using biochar derived from Ulva reticulata. Biomass Conversion and Biorefinery, 2023, 13, 1707-1721.                                                         | 2.9 | 12        |
| 2  | Evaluation of the adsorptive removal of cationic dyes by greening biochar derived from agricultural bio-waste of rice husk. Biomass Conversion and Biorefinery, 2023, 13, 4047-4060.                                              | 2.9 | 22        |
| 3  | Production of Ulva prolifera derived biochar and evaluation of adsorptive removal of Reactive Red 120: batch, isotherm, kinetic, thermodynamic and regeneration studies. Biomass Conversion and Biorefinery, 2023, 13, 5379-5390. | 2.9 | 9         |
| 4  | Continuous sorption of methylene blue dye from aqueous solution using effective<br>microorganisms-based water hyacinth waste compost in a packed column. Biomass Conversion and<br>Biorefinery, 2023, 13, 1189-1198.              | 2.9 | 9         |
| 5  | Biochar from waste biomass as a biocatalyst for biodiesel production: an overview. Applied<br>Nanoscience (Switzerland), 2022, 12, 3665-3676.                                                                                     | 1.6 | 11        |
| 6  | Soft computing-based models and decolorization of Reactive Yellow 81 using Ulva Prolifera biochar.<br>Chemosphere, 2022, 287, 132368.                                                                                             | 4.2 | 14        |
| 7  | Towards sustainable biodiesel production by solar intensification of waste cooking oil and engine parameter assessment studies. Science of the Total Environment, 2022, 804, 150236.                                              | 3.9 | 14        |
| 8  | Biochar for removal of dyes in contaminated water: an overview. Biochar, 2022, 4, 1.                                                                                                                                              | 6.2 | 93        |
| 9  | Effective Removal of Reactive Yellow 145 (RY145) using Biochar Derived from Groundnut Shell.<br>Advances in Materials Science and Engineering, 2022, 2022, 1-7.                                                                   | 1.0 | 5         |
| 10 | Decolourization of Reactive Red 120 Using Agro Waste-Derived Biochar. Advances in Materials Science and Engineering, 2022, 2022, 1-7.                                                                                             | 1.0 | 3         |
| 11 | Strength Prediction of Self-Consolidating Concrete Containing Steel Fibre with Different Fibre<br>Aspect Ratio. Journal of Nanomaterials, 2022, 2022, 1-16.                                                                       | 1.5 | 6         |
| 12 | Removal of Reactive Red 120 in a Batch Technique Using Seaweed-Based Biochar: A Response Surface<br>Methodology Approach. Journal of Nanomaterials, 2022, 2022, 1-12.                                                             | 1.5 | 5         |
| 13 | Experimental Investigation on Reactive Orange 16 Removal Using Waste Biomass of Ulva prolifera.<br>Advances in Materials Science and Engineering, 2022, 2022, 1-8.                                                                | 1.0 | 5         |
| 14 | Optimization of River Sand with Spent Garnet Sand in Concrete Using RSM and R Programming Packages. Journal of Nanomaterials, 2022, 2022, 1-8.                                                                                    | 1.5 | 3         |
| 15 | Biosorption of Malachite Green from Aqueous Phase by Tamarind Fruit Shells Using FBR. Advances in<br>Materials Science and Engineering, 2022, 2022, 1-7.                                                                          | 1.0 | 6         |
| 16 | Optimization of process conditions using RSM and ANFIS for the removal of Remazol Brilliant Orange 3R in a packed bed column. Journal of the Indian Chemical Society, 2021, 98, 100086.                                           | 1.3 | 13        |
| 17 | Treatment of RO Rejects Wastewater by Integrated Coagulation Cum Adsorption Process. Polish Journal of Environmental Studies, 2021, 30, 4031-4038.                                                                                | 0.6 | 1         |
| 18 | Optimization of Remazol Black B Removal Using Biochar Produced from Caulerpa scalpelliformis<br>Using Response Surface Methodology. Advances in Materials Science and Engineering, 2021, 2021, 1-8.                               | 1.0 | 12        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Artificial neural network modelling for biodecolorization of Basic Violet 03 from aqueous solution<br>by biochar derived from agro-bio waste of groundnut hull: Kinetics and thermodynamics.<br>Chemosphere, 2021, 276, 130191. | 4.2 | 16        |
| 20 | Techno-economic feasibility of biochar as biosorbent for basic dye sequestration. Journal of the<br>Indian Chemical Society, 2021, 98, 100107.                                                                                  | 1.3 | 61        |
| 21 | Continuous Sorption of Remazol Brilliant Orange 3R Using Caulerpa scalpelliformis Biochar.<br>Advances in Materials Science and Engineering, 2021, 2021, 1-7.                                                                   | 1.0 | 7         |
| 22 | Biodecolorization of Basic Violet 03 Using Biochar Derived from Agricultural Wastes: Isotherm and<br>Kinetics. Journal of Biobased Materials and Bioenergy, 2020, 14, 316-326.                                                  | 0.1 | 21        |
| 23 | SORPTION KINETICS AND ISOTHERM STUDIES OF CATIONIC DYES USING GROUNDNUT (ARACHIS HYPOGAEA)<br>SHELL DERIVED BIOCHAR A LOW-COST ADSORBENT. Applied Ecology and Environmental Research, 2020,<br>18, 1925-1939.                   | 0.2 | 28        |
| 24 | Remazol Effluent Treatment in Batch and Packed Bed Column Using Biochar Derived from Marine<br>Seaweeds. Nature Environment and Pollution Technology, 2020, 19, 1931-1936.                                                      | 0.2 | 2         |
| 25 | Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis—An eco-friendly<br>approach. Journal of Environmental Chemical Engineering, 2019, 7, 103297.                                                       | 3.3 | 53        |
| 26 | Comparative Desorption Studies on Remediation of Remazol Dyes Using Biochar (Sorbent) Derived from Green Marine Seaweeds. ChemistrySelect, 2019, 4, 7437-7445.                                                                  | 0.7 | 15        |
| 27 | A Critical Insight into Biomass Derived Biosorbent for Bioremediation of Dyes. ChemistrySelect, 2019,<br>4, 9762-9775.                                                                                                          | 0.7 | 14        |
| 28 | Biodecolorization of Basic Blue 41 using EM based Composts: Isotherm and Kinetics. ChemistrySelect, 2019, 4, 10006-10012.                                                                                                       | 0.7 | 8         |
| 29 | Remediation of complex remazol effluent using biochar derived from green seaweed biomass.<br>International Journal of Phytoremediation, 2019, 21, 1179-1189.                                                                    | 1.7 | 33        |
| 30 | A novel sorbent <i>Ulva lactuca</i> â€derived biochar for remediation of Remazol Brilliant Orange 3R in packed column. Water Environment Research, 2019, 91, 642-649.                                                           | 1.3 | 26        |
| 31 | Removal of lead metal ion using biowaste of <i>Pithophora cleveana wittrock and Mimusops elengi</i> . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-19.                                       | 1.2 | 5         |
| 32 | Evaluation of the adsorption capacity of <i>Cocos Nucifera</i> shell derived biochar for basic dyes sequestration from aqueous solution. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.    | 1.2 | 16        |
| 33 | Prediction of RSM and ANN in the decolorization of Reactive Orange 16 using biochar derived from Ulva lactuca. , 0, 211, 304-318.                                                                                               |     | 10        |
| 34 | Box–Behnken experimental design for the optimization of Basic Violet 03 dye removal by groundnut<br>shell derived biochar. , 0, 209, 379-391.                                                                                   |     | 3         |
| 35 | Biosorption of zinc metal ion in aqueous solution using biowaste of Pithophora cleveana Wittrock and Mimusops elengi. , 0, 218, 363-371.                                                                                        |     | 6         |
| 36 | Comparative adsorptive removal of Reactive Red 120 using RSM and ANFIS models in batch and packed bed column. Biomass Conversion and Biorefinery, 0, , 1.                                                                       | 2.9 | 9         |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effective removal of remazol brillinat orange 3R using a biochar derived from Ulva reticulata. Energy<br>Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-14. | 1.2 | 7         |
| 38 | Experimental and chemometric analysis of bioremediation of remazol dyes using biochar derived from green seaweeds. , 0, 184, 340-353.                                                 |     | 18        |
| 39 | Biodecolorization of Remazol dyes using biochar derived from Ulva reticulata: isotherm, kinetics, desorption and thermodynamic studies. , 0, 200, 286-295.                            |     | 19        |