
Keir Joe Menzies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metabolism, 2015, 22, 31-53.	7.2	1,153
2	NAD ⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 2016, 352, 1436-1443.	6.0	907
3	Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell, 2008, 7, 2-12.	3.0	357
4	Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology, 2016, 63, 1190-1204.	3.6	289
5	Protein acetylation in metabolism — metabolites and cofactors. Nature Reviews Endocrinology, 2016, 12, 43-60.	4.3	236
6	Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metabolism, 2014, 19, 1034-1041.	7.2	211
7	NAD ⁺ repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 2016, 8, 361ra139.	5.8	208
8	The role of mitochondria in stem cell fate and aging. Development (Cambridge), 2018, 145, .	1.2	199
9	Repairing Mitochondrial Dysfunction in Disease. Annual Review of Pharmacology and Toxicology, 2018, 58, 353-389.	4.2	198
10	Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. American Journal of Physiology - Cell Physiology, 2005, 289, C994-C1001.	2.1	141
11	Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis. Journal of Biological Chemistry, 2013, 288, 6968-6979.	1.6	134
12	Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. Journal of Hepatology, 2017, 66, 132-141.	1.8	115
13	SIRT2 Deficiency Modulates Macrophage Polarization and Susceptibility to Experimental Colitis. PLoS ONE, 2014, 9, e103573.	1.1	111
14	Sarcopenia and Muscle Aging: A Brief Overview. Endocrinology and Metabolism, 2020, 35, 716-732.	1.3	84
15	SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport. Cell Metabolism, 2014, 20, 603-613.	7.2	73
16	Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. Journal of Applied Physiology, 2009, 107, 1730-1735.	1.2	54
17	The role of SirT1 in muscle mitochondrial turnover. Mitochondrion, 2012, 12, 5-13.	1.6	44
18	Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. American Journal of Physiology - Cell Physiology, 2009, 296, C355-C362.	2.1	43

KEIR JOE MENZIES

#	Article	IF	CITATIONS
19	Mitochondrial dysfunction is associated with a pro-apoptotic cellular environment in senescent cardiac muscle. Mechanisms of Ageing and Development, 2010, 131, 79-88.	2.2	43
20	Proteomics characterization of mitochondrialâ€derived vesicles under oxidative stress. FASEB Journal, 2021, 35, e21278.	0.2	36
21	Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies. Redox Biology, 2018, 14, 509-521.	3.9	35
22	An acetylation rheostat for the control of muscle energy homeostasis. Journal of Molecular Endocrinology, 2013, 51, T101-T113.	1.1	27
23	Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. American Journal of Physiology - Cell Physiology, 2013, 305, C502-C511.	2.1	25
24	The effects of chronic muscle use and disuse on cardiolipin metabolism. Journal of Applied Physiology, 2013, 114, 444-452.	1.2	24
25	Mitochondrial quality control in the cardiac system: An integrative view. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 782-796.	1.8	18
26	GCN5 maintains muscle integrity by acetylating YY1 to promote dystrophin expression. Journal of Cell Biology, 2022, 221, .	2.3	8
27	A multiscale study of the role of dynamin in the regulation of glucose uptake. Integrative Biology (United Kingdom), 2017, 9, 810-819.	0.6	7
28	Gene expression variability in human skeletal muscle transcriptome responses to acute resistance exercise. Experimental Physiology, 2019, 104, 625-629.	0.9	7
29	Grx2 Regulates Skeletal Muscle Mitochondrial Structure and Autophagy. Frontiers in Physiology, 2021, 12, 604210.	1.3	7
30	Nutritional Regulation of Mitochondrial Function. , 2019, , 93-126.		5
31	Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients, 2021, 13, 3466.	1.7	5
32	Muscle Stem Cell Immunostaining. Current Protocols in Mouse Biology, 2018, 8, e47.	1.2	4
33	Commentaries on Viewpoint: Does SIRT1 determine exercise-induced skeletal muscle mitochondrial biogenesis: differences between in vitro and in vivo experiments?. Journal of Applied Physiology, 2012, 112, 929-930.	1.2	2
34	Critical Assessment of the <i>mdx</i> Mouse with <i>Ex Vivo</i> Eccentric Contraction of the Diaphragm Muscle. Current Protocols in Mouse Biology, 2018, 8, e49.	1.2	2
35	Comparison of skeletal muscle mitochondrial properties isolated by protease digestion and mechanical homogenization. FASEB Journal, 2006, 20, .	0.2	0