Burtram Clinton Fielding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292533/publications.pdf

Version: 2024-02-01

55 papers 4,398 citations

236833 25 h-index 243529 44 g-index

60 all docs

60 docs citations

60 times ranked

8003 citing authors

#	Article	IF	CITATIONS
1	Evaluation of synergistic anticandidal activity of Galenia africana extract and fluconazole against Candida albicans and Candida glabrata. Journal of Herbal Medicine, 2022, 32, 100503.	1.0	1
2	Identification of SARSâ€CoVâ€⊋ Omicron variant using spike gene target failure and genotyping assays, Gauteng, South Africa, 2021. Journal of Medical Virology, 2022, 94, 3676-3684.	2.5	23
3	Insult to Injury-Potential Contribution of Coronavirus Disease-19 to Neuroinflammation and the Development of HIV-Associated Neurocognitive Disorders. AIDS Research and Human Retroviruses, 2021, 37, 601-609.	0.5	2
4	Pathogenic Human Coronaviruses. , 2021, , .		5
5	HPLC-MS identification and expression of <i>Candida</i> drug-resistance proteins from African HIV-infected patients. AIMS Microbiology, 2021, 7, 320-335.	1.0	1
6	Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS ONE, 2021, 16, e0245258.	1.1	19
7	Leptin Deficiency, Caused by Malnutrition, Makes You Susceptible to SARS-CoV-2 Infection but Could Offer Protection from Severe COVID-19. MSphere, 2021, 6, .	1.3	7
8	Human Coronaviruses: Counteracting the Damage by Storm. Viruses, 2021, 13, 1457.	1.5	5
9	Title is missing!. , 2021, 16, e0245258.		0
10	Title is missing!. , 2021, 16, e0245258.		0
11	Title is missing!. , 2021, 16, e0245258.		O
12	Title is missing!. , 2021, 16, e0245258.		0
13	Alkaloids: Therapeutic Potential against Human Coronaviruses. Molecules, 2020, 25, 5496.	1.7	38
14	Natural Antioxidants: A Review of Studies on Human and Animal Coronavirus. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	33
15	HIV and Human Coronavirus Coinfections: A Historical Perspective. Viruses, 2020, 12, 937.	1.5	8
16	Is There a Link Between the Pathogenic Human Coronavirus Envelope Protein and Immunopathology? A Review of the Literature. Frontiers in Microbiology, 2020, 11, 2086.	1.5	50
17	Coronavirus envelope protein: current knowledge. Virology Journal, 2019, 16, 69.	1.4	1,449
18	MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses, 2018, 10, 93.	1.5	193

#	Article	IF	CITATIONS
19	Acute toxicity studies of the South African medicinal plant Galenia africana. Toxicology Reports, 2018, 5, 813-818.	1.6	24
20	Molecular Detection of Tick-Borne Pathogen Diversities in Ticks from Livestock and Reptiles along the Shores and Adjacent Islands of Lake Victoria and Lake Baringo, Kenya. Frontiers in Veterinary Science, 2017, 4, 73.	0.9	52
21	The Application of Genetic Tests in an Assisted Reproduction Unit: Karyotype. , 2017, , 27-36.		0
22	Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study. Viruses, 2015, 7, 6642-6660.	1.5	57
23	Practical Considerations in Virtual Screening and Molecular Docking. , 2015, , 487-502.		31
24	Testing of Eight Medicinal Plant Extracts in Combination with Kresoxim-Methyl for Integrated Control of Botrytis cinerea in Apples. Agriculture (Switzerland), 2015, 5, 400-411.	1.4	13
25	Unraveling Host-Vector-Arbovirus Interactions by Two-Gene High Resolution Melting Mosquito Bloodmeal Analysis in a Kenyan Wildlife-Livestock Interface. PLoS ONE, 2015, 10, e0134375.	1.1	45
26	Identification of New Respiratory Viruses in the New Millennium. Viruses, 2015, 7, 996-1019.	1.5	121
27	Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: Homology modelling and molecular dynamic studies. BMC Structural Biology, 2015, 15, 8.	2.3	14
28	The Coronavirus Nucleocapsid Is a Multifunctional Protein. Viruses, 2014, 6, 2991-3018.	1.5	741
29	The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in Virus Pathogenesis. Viruses, 2012, 4, 2902-2923.	1.5	120
30	The variable N-terminal region of DDX5 contains structural elements and auto-inhibits its interaction with NS5B of hepatitis C virus. Biochemical Journal, 2012, 446, 37-46.	1.7	13
31	Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Expert Opinion on Biological Therapy, 2012, 12, 1427-1447.	1.4	2
32	Antimicrobial-resistant Klebsiella species isolated from free-range chicken samples in an informal settlement. Archives of Medical Science, 2012, 1, 39-42.	0.4	20
33	Human coronavirus NL63: a clinically important virus?. Future Microbiology, 2011, 6, 153-159.	1.0	55
34	Expression, purification and preliminary crystallographic analysis of recombinant human DEAD-box polypeptide 5. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 192-194.	0.7	4
35	Understanding Human Coronavirus HCoV-NL63~!2009-11-13~!2010-04-09~!2010-05-25~!. The Open Virology Journal, 2010, 4, 76-84.	1.8	137
36	Human Coronavirus NL63 Open Reading Frame 3 encodes a virion-incorporated N-glycosylated membrane protein. Virology Journal, 2010, 7, 6.	1.4	35

#	Article	IF	CITATIONS
37	The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein. Virology, 2007, 366, 293-303.	1.1	61
38	Severe acute respiratory syndrome coronavirus protein 7a interacts with hSGT. Biochemical and Biophysical Research Communications, 2006, 343, 1201-1208.	1.0	40
39	ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus). Gene, 2006, 377, 46-55.	1.0	31
40	Over-expression of severe acute respiratory syndrome coronavirus 3b protein induces both apoptosis and necrosis in Vero E6 cells. Virus Research, 2006, 122, 20-27.	1.1	52
41	The Singapore Contribution in the Battle against the Severe Acute Respiratory Syndrome., 2006, 4, 1-22.		O
42	Monoclonal Antibodies Targeting the HR2 Domain and the Region Immediately Upstream of the HR2 of the S Protein Neutralize In Vitro Infection of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2006, 80, 941-950.	1.5	99
43	A novel cell-based binding assay system reconstituting interaction between SARS-CoV S protein and its cellular receptor. Journal of Virological Methods, 2005, 123, 41-48.	1.0	22
44	The Severe Acute Respiratory Syndrome Coronavirus 3a Protein Up-Regulates Expression of Fibrinogen in Lung Epithelial Cells. Journal of Virology, 2005, 79, 10083-10087.	1.5	64
45	Amino Acids 1055 to 1192 in the S2 Region of Severe Acute Respiratory Syndrome Coronavirus S Protein Induce Neutralizing Antibodies: Implications for the Development of Vaccines and Antiviral Agents. Journal of Virology, 2005, 79, 3289-3296.	1.5	102
46	Genetic lesions within the 3a gene of SARS-CoV. Virology Journal, 2005, 2, 51.	1.4	7
47	Characterization of a Unique Group-Specific Protein (U122) of the Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2004, 78, 7311-7318.	1.5	67
48	A Novel Severe Acute Respiratory Syndrome Coronavirus Protein, U274, Is Transported to the Cell Surface and Undergoes Endocytosis. Journal of Virology, 2004, 78, 6723-6734.	1.5	149
49	Profiles of Antibody Responses against Severe Acute Respiratory Syndrome Coronavirus Recombinant Proteins and Their Potential Use as Diagnostic Markers. Vaccine Journal, 2004, 11, 362-371.	2.6	163
50	Overexpression of 7a, a Protein Specifically Encoded by the Severe Acute Respiratory Syndrome Coronavirus, Induces Apoptosis via a Caspase-Dependent Pathway. Journal of Virology, 2004, 78, 14043-14047.	1.5	189
51	Functional characterization of the ecdysteroid UDP-glucosyl transferase gene of Helicoverpa armigera single-enveloped nucleopolyhedrovirus isolated in South Africa. Virus Genes, 2003, 27, 17-27.	0.7	8
52	The genetic organization of a 2,966 basepair DNA fragment of a single capsid nucleopolyhedrovirus isolated from Trichoplusia ni. Virus Genes, 2002, 25, 35-43.	0.7	3
53	Identification, sequence analysis, and phylogeny of the immediate early gene 1 of the Trichoplusia ni single nucleocapsid polyhedrosis virus. Virus Genes, 2001, 23, 53-62.	0.7	4
54	Identification and characterization of the Trichoplusia ni single capsid nuclear polyhedrosis virus p10 gene., 2000, 20, 189-192.		4

ARTICLE IF CITATIONS

The characterization and phylogenetic relationship of the Trichoplusia ni single capsid nuclear polyhedrosis virus polyhedrin gene., 1999, 19, 67-72.