Goichi Miyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292183/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex. Neuron, 2011, 71, 995-1013.	8.1	1,659
2	Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons. Journal of Neuroscience, 2010, 30, 1582-1594.	3.6	478
3	Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic <i>Olig2</i> -Expressing Precursors. Journal of Neuroscience, 2007, 27, 7786-7798.	3.6	356
4	The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes. Neuron, 2008, 59, 722-732.	8.1	304
5	Characterization of Nkx6-2-Derived Neocortical Interneuron Lineages. Cerebral Cortex, 2009, 19, i1-i10.	2.9	263
6	GABAergic Interneuron Lineages Selectively Sort into Specific Cortical Layers during Early Postnatal Development. Cerebral Cortex, 2011, 21, 845-852.	2.9	179
7	<i>Hes7</i> : a bHLHâ€ŧype repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes To Cells, 2001, 6, 175-185.	1.2	170
8	Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development (Cambridge), 2007, 134, 285-293.	2.5	154
9	Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells. Journal of Neuroscience, 2010, 30, 2165-2176.	3.6	153
10	The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nature Neuroscience, 2010, 13, 1373-1379.	14.8	147
11	Requirement of Multiple Basic Helix-Loop-Helix Genes for Retinal Neuronal Subtype Specification. Journal of Biological Chemistry, 2004, 279, 28492-28498.	3.4	132
12	Dynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Precursors into the Cortical Plate. Neuron, 2012, 74, 1045-1058.	8.1	126
13	<i>Prox1</i> Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. Journal of Neuroscience, 2015, 35, 12869-12889.	3.6	104
14	Continuous Postnatal Neurogenesis Contributes to Formation of the Olfactory Bulb Neural Circuits and Flexible Olfactory Associative Learning. Journal of Neuroscience, 2014, 34, 5788-5799.	3.6	101
15	The Basic Helix-Loop-Helix Genehesr2Promotes Gliogenesis in Mouse Retina. Journal of Neuroscience, 2001, 21, 1265-1273.	3.6	93
16	<i>Emx1</i> -Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala. Journal of Neuroscience, 2009, 29, 15933-15946.	3.6	68
17	Identification of a Novel Basic Helix-Loop-Helix Gene, <i>Heslike</i> , and Its Role in GABAergic Neurogenesis. Journal of Neuroscience, 2004, 24, 3672-3682.	3.6	62
18	Directing neuron-specific transgene expression in the mouse CNS. Current Opinion in Neurobiology, 2006, 16, 577-584.	4.2	46

Соісні Міуозні

#	Article	IF	CITATIONS
19	Hierarchical genetic interactions between FOXG1 and LHX2 regulate the formation of the cortical hem in the developing telencephalon. Development (Cambridge), 2018, 145, .	2.5	42
20	Dynamic Changes in Interneuron Morphophysiological Properties Mark the Maturation of Hippocampal Network Activity. Journal of Neuroscience, 2012, 32, 6688-6698.	3.6	32
21	FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes. Nature Communications, 2021, 12, 3773.	12.8	30
22	A multifunctional teal-fluorescent Rosa26 reporter mouse line for Cre- and Flp-mediated recombination. Neuroscience Research, 2012, 73, 85-91.	1.9	28
23	Sensory cortex wiring requires preselection of short- and long-range projection neurons through an Egr-Foxg1-COUP-TFI network. Nature Communications, 2019, 10, 3581.	12.8	27
24	Elucidating the developmental trajectories of GABAergic cortical interneuron subtypes. Neuroscience Research, 2019, 138, 26-32.	1.9	22
25	A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex. Neuron, 2011, 72, 1091.	8.1	21
26	Experience-dependent MeCP2 expression in the excitatory cells of mouse visual thalamus. PLoS ONE, 2018, 13, e0198268.	2.5	8
27	Specification of GABAergic Neocortical Interneurons. , 2013, , 89-126.		8