
Wilhelm Gruissem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiology, 2004, 136, 2621-2632.	2.3	2,232
2	Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Advances in Bioinformatics, 2008, 2008, 1-5.	5.7	1,692
3	Fruits: A Developmental Perspective Plant Cell, 1993, 5, 1439-1451.	3.1	830
4	Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annual Review of Plant Biology, 2013, 64, 665-700.	8.6	803
5	A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 2006, 22, 1122-1129.	1.8	782
6	Calmodulins and Calcineurin B–like Proteins. Plant Cell, 2002, 14, S389-S400.	3.1	619
7	Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6866-6871.	3.3	616
8	The Arabidopsis thaliana Chloroplast Proteome Reveals Pathway Abundance and Novel Protein Functions. Current Biology, 2004, 14, 354-362.	1.8	585
9	Genome-Scale Proteomics Reveals <i>Arabidopsis thaliana</i> Gene Models and Proteome Dynamics. Science, 2008, 320, 938-941.	6.0	490
10	Genome-Wide Analysis of Hydrogen Peroxide-Regulated Gene Expression in Arabidopsis Reveals a High Light-Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis Â. Plant Physiology, 2005, 139, 806-821.	2.3	476
11	Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant Journal, 2005, 41, 546-566.	2.8	430
12	Large-Scale Arabidopsis Phosphoproteome Profiling Reveals Novel Chloroplast Kinase Substrates and Phosphorylation Networks Â. Plant Physiology, 2009, 150, 889-903.	2.3	423
13	Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4718-4723.	3.3	422
14	Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell, 1987, 51, 1145-1157.	13.5	406
15	The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes and Development, 2003, 17, 1540-1553.	2.7	390
16	Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO Journal, 2003, 22, 4804-4814.	3.5	379
17	Control of plastid gene expression during development: The limited role of transcriptional regulation. Cell, 1987, 49, 379-387.	13.5	375
18	The RETINOBLASTOMA-RELATED Gene Regulates Stem Cell Maintenance in Arabidopsis Roots. Cell, 2005, 123, 1337-1349.	13.5	336

#	Article	IF	CITATIONS
19	Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thaliana Â. Plant Cell, 2005, 17, 3035-3050.	3.1	309
20	Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnology Journal, 2009, 7, 631-644.	4.1	298
21	Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology, 2004, 5, R92.	13.9	290
22	Fruits: A Developmental Perspective. Plant Cell, 1993, 5, 1439.	3.1	282
23	Chloroplast gene expression: How plants turn their plastids on. Cell, 1989, 56, 161-170.	13.5	269
24	Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature, 2004, 429, 776-780.	13.7	262
25	RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics, 2011, 12, 156.	1.2	260
26	Gene-expression analysis and network discovery using Genevestigator. Trends in Plant Science, 2005, 10, 407-409.	4.3	254
27	Structure and Dynamics of the Isoprenoid Pathway Network. Molecular Plant, 2012, 5, 318-333.	3.9	251
28	Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Research, 2006, 34, 462-471.	6.5	249
29	Genome-Wide Analysis of Gene Expression Profiles Associated with Cell Cycle Transitions in Growing Organs of Arabidopsis. Plant Physiology, 2005, 138, 734-743.	2.3	247
30	The BioCassava Plus Program: Biofortification of Cassava for Sub-Saharan Africa. Annual Review of Plant Biology, 2011, 62, 251-272.	8.6	245
31	<i>RRB1</i> and <i>RRB2</i> Encode Maize Retinoblastoma-Related Proteins That Interact with a Plant D-Type Cyclin and Geminivirus Replication Protein. Molecular and Cellular Biology, 1997, 17, 5077-5086.	1.1	230
32	Genome-Wide Identification of Potential Plant E2F Target Genes. Plant Physiology, 2005, 139, 316-328.	2.3	229
33	Genome-wide gene expression in an Arabidopsis cell suspension. Plant Molecular Biology, 2003, 53, 423-442.	2.0	224
34	Cell Cycle-regulated Gene Expression inArabidopsis. Journal of Biological Chemistry, 2002, 277, 41987-42002.	1.6	222
35	Polycomb-group proteins repressthe floral activator AGL19 in the FLC-independent vernalization pathway. Genes and Development, 2006, 20, 1667-1678.	2.7	222
36	Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development (Cambridge), 2003, 130, 2555-2565.	1.2	208

#	Article	IF	CITATIONS
37	Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO Journal, 2013, 32, 2073-2085.	3.5	196
38	Substrate recognition by ADAR1 and ADAR2. Rna, 2001, 7, 846-858.	1.6	193
39	Systemsâ€based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Molecular Systems Biology, 2012, 8, 606.	3.2	191
40	Nutritional enhancement of rice for human health: The contribution of biotechnology. Biotechnology Advances, 2013, 31, 50-57.	6.0	175
41	Dynamic Spectrum Quality Assessment and Iterative Computational Analysis of Shotgun Proteomic Data. Molecular and Cellular Proteomics, 2006, 5, 652-670.	2.5	174
42	NovoHMM:Â A Hidden Markov Model for de Novo Peptide Sequencing. Analytical Chemistry, 2005, 77, 7265-7273.	3.2	164
43	<i>Arabidopsis</i> RETINOBLASTOMA-RELATED Is Required for Stem Cell Maintenance, Cell Differentiation, and Lateral Organ Production Â. Plant Cell, 2010, 22, 1792-1811.	3.1	153
44	MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends in Cell Biology, 2005, 15, 295-302.	3.6	150
45	Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato. Molecular Genetics and Genomics, 1987, 209, 247-256.	2.4	148
46	Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12955-12960.	3.3	148
47	Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Molecular Biology, 2009, 70, 265-272.	2.0	141
48	Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories Â. Plant Physiology, 2010, 152, 2142-2157.	2.3	137
49	The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytologist, 2016, 212, 192-207.	3.5	134
50	Senescenceâ€Inducible Expression of Isopentenyl Transferase Extends Leaf Life, Increases Drought Stress Resistance and Alters Cytokinin Metabolism in Cassava. Journal of Integrative Plant Biology, 2010, 52, 653-669.	4.1	133
51	<i>Arabidopsis </i> <scp>GERANYLGERANYL DIPHOSPHATE SYNTHASE</scp> 11 is a hub isozyme required for the production of most photosynthesisâ€related isoprenoids. New Phytologist, 2016, 209, 252-264.	3.5	131
52	Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology, 2019, 20, 80.	3.8	129
53	High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1972-9.	3.3	128
54	Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Molecular Biology, 2013, 82, 393-416.	2.0	127

#	Article	IF	CITATIONS
55	Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Cell, 1983, 35, 815-828.	13.5	126
56	Constitutive transcription and regulation of gene expression in non-photosynthetic plastids of higher plants. EMBO Journal, 1988, 7, 3301-3308.	3.5	126
57	Changes in Photosynthetic Capacity and Photosynthetic Protein Pattern during Tomato Fruit Ripening. Plant Physiology, 1987, 84, 911-917.	2.3	125
58	Organization and expression of the genes encoding ribulose-1,5-bisphosphate carboxylase in higher plants. Photosynthesis Research, 1988, 16, 117-139.	1.6	124
59	Control mechanisms of plastid gene expression. Critical Reviews in Plant Sciences, 1993, 12, 19-55.	2.7	123
60	Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family Plant Cell, 1995, 7, 2175-2185.	3.1	123
61	Genomeâ€scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant Journal, 2008, 56, 493-504.	2.8	120
62	The Chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 Is Essential for H3K27me3 Binding and Function during Arabidopsis Development. PLoS ONE, 2009, 4, e5335.	1.1	120
63	Transcriptional Programs of Early Reproductive Stages in Arabidopsis. Plant Physiology, 2004, 135, 1765-1775.	2.3	119
64	Functional Genomic Analysis of CAF-1 Mutants in Arabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 9560-9568.	1.6	119
65	Proteome Dynamics during Plastid Differentiation in Rice. Plant Physiology, 2007, 143, 912-923.	2.3	119
66	Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7104-7108.	3.3	113
67	Chloroplast gene expression and promoter identification in chloroplast extracts. Methods in Enzymology, 1986, 118, 253-270.	0.4	112
68	Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nature Protocols, 2009, 4, 1845-1854.	5.5	112
69	Accelerated ex situ breeding of <i>GBSS</i> - and <i>PTST1</i> -edited cassava for modified starch. Science Advances, 2018, 4, eaat6086.	4.7	111
70	Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development (Cambridge), 2006, 133, 4163-4172.	1.2	110
71	Arabidopsis MSI1 Is Required for Negative Regulation of the Response to Drought Stress. Molecular Plant, 2009, 2, 675-687.	3.9	110
72	Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Current Opinion in Biotechnology, 2017, 44, 8-15.	3.3	110

#	Article	IF	CITATIONS
73	Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnology Journal, 2005, 3, 385-397.	4.1	109
74	Proteome Analysis of the Rice Etioplast. Molecular and Cellular Proteomics, 2005, 4, 1072-1084.	2.5	108
75	Regulation of flowering time by Arabidopsis MSI1. Development (Cambridge), 2006, 133, 1693-1702.	1.2	107
76	plprot: A Comprehensive Proteome Database for Different Plastid Types. Plant and Cell Physiology, 2006, 47, 432-436.	1.5	106
77	Engineering resistance to geminiviruses ? review and perspectives. Plant Biotechnology Journal, 2007, 5, 207-220.	4.1	106
78	Multiplying the efficiency and impact of biofortification through metabolic engineering. Nature Communications, 2020, 11, 5203.	5.8	106
79	Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7815-7820.	3.3	105
80	Proteome Analysis of Bell Pepper (Capsicum annuum L.) Chromoplasts. Plant and Cell Physiology, 2006, 47, 1663-1673.	1.5	104
81	A Dynamic Reciprocal RBR-PRC2 Regulatory Circuit Controls Arabidopsis Gametophyte Development. Current Biology, 2008, 18, 1680-1686.	1.8	104
82	Degrading chloroplast mRNA: the role of polyadenylation. Trends in Biochemical Sciences, 1999, 24, 199-202.	3.7	100
83	Prenylation of the Floral Transcription Factor APETALA1 Modulates Its Function. Plant Cell, 2000, 12, 1257-1266.	3.1	100
84	Chromatin-Remodeling and Memory Factors. New Regulators of Plant Development. Plant Physiology, 2002, 130, 1090-1101.	2.3	100
85	iTRAQâ€based analysis of changes in the cassava root proteome reveals pathways associated with postâ€harvest physiological deterioration. Plant Journal, 2011, 67, 145-156.	2.8	100
86	Functional Requirement of Plant Farnesyltransferase during Development in Arabidopsis. Plant Cell, 2000, 12, 1267-1278.	3.1	98
87	Genevestigator Transcriptome Meta-Analysis and Biomarker Search using Rice and Barley Gene Expression Databases. Molecular Plant, 2008, 1, 851-857.	3.9	98
88	Gene Expression Analysis, Proteomics, and Network Discovery. Plant Physiology, 2010, 152, 402-410.	2.3	97
89	Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Molecular Biology, 1986, 7, 367-376.	2.0	95
90	Lipid modifications of proteins – slipping in and out of membranes. Trends in Plant Science, 1999, 4, 439-445.	4.3	95

#	Article	IF	CITATIONS
91	Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theoretical and Applied Genetics, 2017, 130, 283-292.	1.8	95
92	MASCP Gator: An Aggregation Portal for the Visualization of Arabidopsis Proteomics Data. Plant Physiology, 2011, 155, 259-270.	2.3	94
93	Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends in Genetics, 1988, 4, 258-263.	2.9	92
94	Chloroplast proteomics: potentials and challenges. Journal of Experimental Botany, 2004, 55, 1213-1220.	2.4	89
95	Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Molecular Biology, 2007, 64, 549-557.	2.0	89
96	Large-Scale Proteomics of the Cassava Storage Root and Identification of a Target Gene to Reduce Postharvest Deterioration. Plant Cell, 2014, 26, 1913-1924.	3.1	88
97	Enhanced Grain Iron Levels in Rice Expressing an IRON-REGULATED METAL TRANSPORTER, NICOTIANAMINE SYNTHASE, and FERRITIN Gene Cassette. Frontiers in Plant Science, 2017, 8, 130.	1.7	88
98	A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5863-5867.	3.3	87
99	Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends in Plant Science, 2012, 17, 139-148.	4.3	85
100	Exploiting the Combination of Natural and Genetically Engineered Resistance to Cassava Mosaic and Cassava Brown Streak Viruses Impacting Cassava Production in Africa. PLoS ONE, 2012, 7, e45277.	1.1	85
101	The nutritional fortification of cereals. Current Opinion in Biotechnology, 2004, 15, 162-165.	3.3	81
102	Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. Journal of Proteomics, 2013, 93, 5-19.	1.2	81
103	Molecular Characterization of At5PTase1, an Inositol Phosphatase Capable of Terminating Inositol Trisphosphate Signaling. Plant Physiology, 2001, 126, 801-810.	2.3	80
104	The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest. Plant Journal, 2010, 63, 512-525.	2.8	80
105	Plastid gene expression during fruit ripening in tomato. Plant Molecular Biology, 1985, 5, 373-384.	2.0	77
106	Plastid Proteome Assembly without Toc159: Photosynthetic Protein Import and Accumulation of <i>N</i> -Acetylated Plastid Precursor Proteins Â. Plant Cell, 2011, 23, 3911-3928.	3.1	77
107	The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways Â. Plant Physiology, 2013, 161, 1172-1188.	2.3	77
108	H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes. Plant Physiology, 2016, 170, 1566-1577.	2.3	77

#	Article	IF	CITATIONS
109	Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice. Plant Biotechnology Journal, 2019, 17, 9-20.	4.1	77
110	pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes inArabidopsis thaliana. Integrative Biology (United Kingdom), 2011, 3, 225-237.	0.6	74
111	Photoperiodic control of the <i>Arabidopsis</i> proteome reveals a translational coincidence mechanism. Molecular Systems Biology, 2018, 14, e7962.	3.2	74
112	Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Reports, 2011, 30, 779-787.	2.8	73
113	PlantDB – a versatile database for managing plant research. Plant Methods, 2008, 4, 1.	1.9	72
114	NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Molecular Biology, 2016, 90, 207-215.	2.0	72
115	Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant. Frontiers in Plant Science, 2013, 4, 143.	1.7	70
116	Protein farnesylation in plants — conserved mechanisms but different targets. Current Opinion in Plant Biology, 2003, 6, 530-535.	3.5	69
117	DCL is a plant-specific protein required for plastid ribosomal RNA processing and embryo development. Plant Molecular Biology, 2003, 53, 531-543.	2.0	68
118	Proteome Analysis of Tobacco Bright Yellow-2 (BY-2) Cell Culture Plastids as a Model for Undifferentiated Heterotrophic Plastids. Journal of Proteome Research, 2004, 3, 1128-1137.	1.8	68
119	Semi-supervised LC/MS alignment for differential proteomics. Bioinformatics, 2006, 22, e132-e140.	1.8	67
120	Characterization of Post-Translational Modifications of Histone H2B-Variants Isolated from <i>Arabidopsis thaliana</i> . Journal of Proteome Research, 2007, 6, 3655-3668.	1.8	67
121	AUDENS:Â A Tool for Automated Peptide de Novo Sequencing. Journal of Proteome Research, 2005, 4, 1768-1774.	1.8	66
122	Dual Interaction of a Geminivirus Replication Accessory Factor with a Viral Replication Protein and a Plant Cell Cycle Regulator. Virology, 2001, 279, 570-576.	1.1	65
123	Glucan, Water Dikinase Exerts Little Control over Starch Degradation in Arabidopsis Leaves at Night Â. Plant Physiology, 2014, 165, 866-879.	2.3	65
124	Novel conserved sequence motifs in plant G-box binding proteins and implications for interactive domains. Nucleic Acids Research, 1994, 22, 470-478.	6.5	63
125	Large scale germplasm screening for identification of novel rice blast resistance sources. Frontiers in Plant Science, 2014, 5, 505.	1.7	62
126	Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nature Plants, 2015, 1, 15127.	4.7	62

#	Article	IF	CITATIONS
127	Sequence coding for a novel proline-rich protein preferentially expressed in young tomato fruit. Plant Molecular Biology, 1991, 17, 149-150.	2.0	61
128	Protein prenylation in plants: old friends and new targets. Plant Molecular Biology, 1999, 39, 865-870.	2.0	61
129	MIAME/Plant - adding value to plant microarrray experiments. Plant Methods, 2006, 2, 1.	1.9	61
130	AGRONOMICS1: A New Resource for Arabidopsis Transcriptome Profiling Â. Plant Physiology, 2010, 152, 487-499.	2.3	61
131	Efficient Prenylation by a Plant Geranylgeranyltransferase-I Requires a Functional CaaL Box Motif and a Proximal Polybasic Domain. Plant Physiology, 2001, 126, 1416-1429.	2.3	60
132	Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculenta) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
133	Arabidopsis replacement histone variant H3.3 occupies promoters of regulated genes. Genome Biology, 2014, 15, R62.	13.9	60
134	Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology, 2017, 38, 50-58.	3.5	60
135	Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. Nature Biotechnology, 2015, 33, 1029-1032.	9.4	59
136	Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. Plant Journal, 2019, 99, 176-194.	2.8	59
137	Developmentally Controlled Farnesylation Modulates AtNAP1;1 Function in Cell Proliferation and Cell Expansion during Arabidopsis Leaf Development. Plant Physiology, 2006, 142, 1412-1426.	2.3	58
138	Induction of Differentiation in the Shoot Apical Meristem by Transient Overexpression of a Retinoblastoma-Related Protein. Plant Physiology, 2006, 141, 1338-1348.	2.3	58
139	Farnesylation Directs AtIPT3 Subcellular Localization and Modulates Cytokinin Biosynthesis in Arabidopsis. Plant Physiology, 2008, 146, 1155-1164.	2.3	58
140	Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Scientific Reports, 2017, 7, 6883.	1.6	58
141	Arachidonic Acid Alters Tomato HMG Expression and Fruit Growth and Induces 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase-Independent Lycopene Accumulation1. Plant Physiology, 1999, 119, 41-48.	2.3	57
142	Flavonoid profiling among wild type and related GM wheat varieties. Plant Molecular Biology, 2007, 65, 645-654.	2.0	57
143	Retinoblastoma-related proteins in plants: homologues or orthologues of their metazoan counterparts?. Plant Molecular Biology, 2000, 43, 635-642.	2.0	55
144	Arabidopsis transcript profiling on Affymetrix GeneChip arrays. Plant Molecular Biology, 2003, 53, 457-465.	2.0	55

#	Article	IF	CITATIONS
145	Reference genes for reliable potyvirus quantitation in cassava and analysis of Cassava brown streak virus load in host varieties. Journal of Virological Methods, 2011, 177, 49-54.	1.0	55
146	Robust transformation procedure for the production of transgenic farmer-preferred cassava landraces. Plant Methods, 2012, 8, 24.	1.9	55
147	RETINOBLASTOMA-RELATED PROTEIN controls the transition to autotrophic plant development. Development (Cambridge), 2011, 138, 2977-2986.	1.2	53
148	Parallel analysis of <i>Arabidopsis</i> circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biology, 2017, 7, 160333.	1.5	52
149	Selective in vitro transcription of chloroplast genes. Journal of Cellular Biochemistry, 1983, 22, 31-46.	1.2	51
150	The Chloroplast Kinase Network: New Insights from Large-Scale Phosphoproteome Profiling. Molecular Plant, 2009, 2, 1141-1153.	3.9	51
151	BRR2a Affects Flowering Time via FLC Splicing. PLoS Genetics, 2016, 12, e1005924.	1.5	51
152	Two cassava promoters related to vascular expression and storage root formation. Planta, 2003, 218, 192-203.	1.6	50
153	Arabidopsis Retinoblastoma-related and Polycomb group proteins: cooperation during plant cell differentiation and development. Journal of Experimental Botany, 2014, 65, 2667-2676.	2.4	49
154	Cassava post-harvest physiological deterioration: From triggers to symptoms. Postharvest Biology and Technology, 2018, 142, 115-123.	2.9	49
155	Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant Journal, 2000, 24, 775-784.	2.8	49
156	Arabidopsis thaliana proteomics: from proteome to genome. Journal of Experimental Botany, 2006, 57, 1485-1491.	2.4	48
157	Distinct modes of DNA accessibility in plant chromatin. Nature Communications, 2012, 3, 1281.	5.8	48
158	Dosage-Sensitive Function of RETINOBLASTOMA RELATED and Convergent Epigenetic Control Are Required during the Arabidopsis Life Cycle. PLoS Genetics, 2010, 6, e1000988.	1.5	47
159	Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Science, 2018, 270, 13-22.	1.7	47
160	Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. Frontiers in Plant Science, 2015, 6, 376.	1.7	46
161	Altered expression of the Arabidopsis ortholog of DCL affects normal plant development. Planta, 2004, 219, 819-26.	1.6	45
162	Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice. Frontiers in Plant Science, 2013, 4, 156.	1.7	45

#	Article	IF	CITATIONS
163	Distinct evolutionary strategies in the GGPPS family from plants. Frontiers in Plant Science, 2014, 5, 230.	1.7	45
164	Protein Abundance Changes and Ubiquitylation Targets Identified after Inhibition of the Proteasome with Syringolin A. Molecular and Cellular Proteomics, 2014, 13, 1523-1536.	2.5	45
165	Accurate processing and pseudouridylation of chloroplast transfer RNA in a chloroplast transcription system. Plant Molecular Biology, 1984, 3, 97-109.	2.0	44
166	A workflow to increase the detection rate of proteins from unsequenced organisms in highâ€ŧhroughput proteomics experiments. Proteomics, 2007, 7, 4245-4254.	1.3	43
167	A Gain-of-Function Mutation of Arabidopsis CRYPTOCHROME1 Promotes Flowering. Plant Physiology, 2010, 154, 1633-1645.	2.3	43
168	Current progress and challenges in crop genetic transformation. Journal of Plant Physiology, 2021, 261, 153411.	1.6	43
169	Analysis of Shotgun Proteomics and RNA Profiling Data fromArabidopsisthalianaChloroplasts. Journal of Proteome Research, 2005, 4, 637-640.	1.8	42
170	Biotechnological approaches to cassava protein improvement. Trends in Food Science and Technology, 2006, 17, 634-641.	7.8	42
171	Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible African cassava cultivars. BMC Biology, 2019, 17, 75.	1.7	42
172	Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant, Cell and Environment, 2021, 44, 821-841.	2.8	41
173	Unlocking the potential of tropical root crop biotechnology in east Africa by establishing a genetic transformation platform for local farmer-preferred cassava cultivars. Frontiers in Plant Science, 2013, 4, 526.	1.7	40
174	Identification of novel alleles of the rice blast resistance gene Pi54. Scientific Reports, 2015, 5, 15678.	1.6	40
175	Symplasmic phloem unloading and radial post-phloem transport via vascular rays in tuberous roots of Manihot esculenta. Journal of Experimental Botany, 2019, 70, 5559-5573.	2.4	39
176	Regulation of Plastid Gene Expression during Photooxidative Stress. Plant Physiology, 1992, 99, 1406-1415.	2.3	38
177	Molecular insights into <i>Cassava brown streak virus</i> susceptibility and resistance by profiling of the early host response. Molecular Plant Pathology, 2018, 19, 476-489.	2.0	38
178	Fluorescent imaging of GUS activity and RT-PCR analysis of gene expression in the shoot apical meristem. Plant Journal, 1996, 10, 745-754.	2.8	36
179	Enhancement of vitamin B ₆ levels in rice expressing Arabidopsis vitamin B ₆ biosynthesis <i>de novo</i> genes. Plant Journal, 2019, 99, 1047-1065.	2.8	36

180 Control of mRNA Degradation in Organelles. , 1993, , 329-365.

#	Article	IF	CITATIONS
181	Regulation of tomato HMG1 during cell proliferation and growth. Planta, 1999, 208, 310-318.	1.6	35
182	Transposon Tagging of the Defective embryo and meristems Gene of Tomato. Plant Cell, 1998, 10, 877-887.	3.1	34
183	The Cassava Source–Sink project: opportunities and challenges for crop improvement by metabolic engineering. Plant Journal, 2020, 103, 1655-1665.	2.8	33
184	FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta) Tj ETQq0 C	0 rgBT /O 1.6	verlock 10 Tf
185	Diurnal changes in the histone H3 signature H3K9ac H3K27ac H3S28p are associated with diurnal gene expression in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 2557-2569.	2.8	31
186	Changes in Chloroplast mRNA Stability during Leaf Development. Plant Cell, 1991, 3, 517.	3.1	30
187	Rationalising vitamin B6 biofortification in crop plants. Current Opinion in Biotechnology, 2017, 44, 130-137.	3.3	30
188	Developmental and organ-specific changes in DNA-protein interactions in the tomato rbcS3B and rbcS3C promoter regions. Plant Molecular Biology, 1993, 21, 1-15.	2.0	29
189	Endonucleolytic activation directs dark-induced chloroplast mRNA degradation. Nucleic Acids Research, 2002, 30, 4527-4533.	6.5	29
190	PepSplice: cache-efficient search algorithms for comprehensive identification of tandem mass spectra. Bioinformatics, 2007, 23, 3016-3023.	1.8	29
191	AtIPD: A Curated Database of Arabidopsis Isoprenoid Pathway Models and Genes for Isoprenoid Network Analysis Â. Plant Physiology, 2011, 156, 1655-1660.	2.3	29
192	pep2pro: the high-throughput proteomics data processing, analysis, and visualization tool. Frontiers in Plant Science, 2012, 3, 123.	1.7	29
193	The haplotype-resolved chromosome pairs of a heterozygous diploid African cassava cultivar reveal novel pan-genome and allele-specific transcriptome features. GigaScience, 2022, 11, .	3.3	29
194	Vitamin B1 diversity and characterization of biosynthesis genes in cassava. Journal of Experimental Botany, 2017, 68, 3351-3363.	2.4	28
195	Meiotic Recombination Between ParalogousRBCSBGenes on Sister Chromatids ofArabidopsis thaliana. Genetics, 2004, 166, 947-957.	1.2	27
196	A long photoperiod relaxes energy management in Arabidopsis leaf six. Current Plant Biology, 2015, 2, 34-45.	2.3	27
197	Control of trichome branching by Chromatin Assembly Factor-1. BMC Plant Biology, 2008, 8, 54.	1.6	26

Morpho-physiological and molecular evaluation of drought tolerance in cassava (Manihot esculenta) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
199	Developmental and organ-specific changes in DNA-protein interactions in the tomato rbcS1, rbcS2 and rbcS3A promoter regions. Plant Molecular Biology, 1993, 21, 69-88.	2.0	25
200	Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome. BMC Cancer, 2012, 12, 310.	1.1	25
201	DNA sequence of the tomato fruit expressed proline-rich protein gene TPRP-F1 reveals an intron within the 3 untranslated transcript. Plant Molecular Biology, 1992, 18, 407-409.	2.0	24
202	A 43 kD light-regulated chloroplast RNA-binding protein interacts with the psbA 5? non-translated leader RNA. Photosynthesis Research, 1995, 46, 235-248.	1.6	24
203	Web-based analysis of the mouse transcriptome using Genevestigator. BMC Bioinformatics, 2006, 7, 311.	1.2	24
204	Exact biclustering algorithm for the analysis of large gene expression data sets. BMC Bioinformatics, 2012, 13, .	1.2	23
205	Proteome Analysis of Chloroplast mRNA Processing and Degradation. Journal of Proteome Research, 2007, 6, 809-820.	1.8	22
206	ExpressionData - A public resource of high quality curated datasets representing gene expression across anatomy, development and experimental conditions. BioData Mining, 2014, 7, 18.	2.2	22
207	Characterization of Brown Streak Virus–Resistant Cassava. Molecular Plant-Microbe Interactions, 2016, 29, 527-534.	1.4	22
208	Alpha-Glucan, Water Dikinase 1 Affects Starch Metabolism and Storage Root Growth in Cassava (Manihot esculenta Crantz). Scientific Reports, 2017, 7, 9863.	1.6	22
209	Expression Dynamics of the Tomato rbcS Gene Family during Development. Plant Cell, 1991, 3, 1289.	3.1	21
210	Integrated proteome and metabolite analysis of the deâ€etiolation process in plastids from rice (<i>Oryza sativa</i> L.). Proteomics, 2011, 11, 1751-1763.	1.3	21
211	Measuring Arabidopsis Chromatin Accessibility Using DNase I-Polymerase Chain Reaction and DNase I-Chip Assays. Plant Physiology, 2013, 162, 1794-1801.	2.3	21
212	Cassava geminivirus agroclones for virus-induced gene silencing in cassava leaves and roots. Plant Methods, 2018, 14, 73.	1.9	21
213	A new full-length circular DNA sequencing method for viral-sized genomes reveals that RNAi transgenic plants provoke a shift in geminivirus populations in the field. Nucleic Acids Research, 2019, 47, e9-e9.	6.5	21
214	Tomato Hydroxymethylglutaryl-CoA Reductase Is Required Early in Fruit Development but Not during Ripening. Plant Cell, 1989, 1, 181.	3.1	19
215	Developmental and Organ-Specific Changes in Promoter DNA-Protein Interactions in the Tomato rbcS Gene Family. Plant Cell, 1991, 3, 1305.	3.1	19
216	Global regulatory architecture of human, mouse and rat tissue transcriptomes. BMC Genomics, 2013, 14, 716.	1.2	19

#	Article	IF	CITATIONS
217	A Conserved Family of WD-40 Proteins Binds to the Retinoblastoma Protein in Both Plants and Animals. Plant Cell, 1997, 9, 1595.	3.1	18
218	Identification and characterization of chloroplast casein kinase II from Oryza sativa (rice). Journal of Experimental Botany, 2015, 66, 175-187.	2.4	18
219	Ectopic Gene Expression and Organogenesis in <i>Arabidopsis</i> Mutants Missing BRU1 Required for Genome Maintenance. Genetics, 2011, 189, 83-95.	1.2	17
220	Meselect – A Rapid and Effective Method for the Separation of the Main Leaf Tissue Types. Frontiers in Plant Science, 2016, 7, 1701.	1.7	16
221	Transcription of the Cloned Genes for Ribosomal 5â€ S RNA in a System Reconstituted <i>in vitro</i> from HeLa Cells. FEBS Journal, 1981, 117, 407-415.	0.2	15
222	Organization and Expression of the Chloroplast Genome of Euglena gracilis. , 1983, , 155-166.		14
223	Genome Wide Analysis of the Transcriptional Profiles in Different Regions of the Developing Rice Grains. Rice, 2020, 13, 62.	1.7	14
224	Differential expression of the partially duplicated chloroplast S10 ribosomal protein operon. Molecular Genetics and Genomics, 1993, 241-241, 141-152.	2.4	13
225	The global plant council: Increasing the impact of plant research to meet global challenges. Journal of Plant Biology, 2012, 55, 343-348.	0.9	13
226	Efficient replication of cloned African cassava mosaic virus in cassava leaf disks. Virus Research, 2003, 92, 47-54.	1.1	12
227	Mass Spectrometric Identification of RNA Binding Proteins from Dried EMSA Gels. Journal of Proteome Research, 2004, 3, 662-664.	1.8	12
228	Gametophyte differentiation and imprinting control in plants. Communicative and Integrative Biology, 2009, 2, 144-146.	0.6	12
229	Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene. GM Crops, 2011, 2, 193-200.	1.8	12
230	Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib. Frontiers in Plant Science, 2016, 7, 915.	1.7	12
231	MFP1, a Novel Plant Filament-Like Protein with Affinity for Matrix Attachment Region DNA. Plant Cell, 1996, 8, 2105.	3.1	10
232	Screening for Resistance in Farmer-Preferred Cassava Cultivars from Ghana to a Mixed Infection of CBSV and UCBSV. Plants, 2020, 9, 1026.	1.6	10
233	Post-Transcriptional Control of Plastid mRNA Accumulation during Adaptation of Chloroplasts to Different Light Quality Environments. Plant Cell, 1989, 1, 645.	3.1	9
234	Li+ Induces Hypertrophy and Down Regulation of Myo-Inositol Monophosphatase in Tomato. Journal of Plant Growth Regulation, 2001, 20, 78-86.	2.8	9

#	Article	IF	CITATIONS
235	Efficient Genetic Transformation and Regeneration of a Farmer-Preferred Cassava Cultivar From Ghana. Frontiers in Plant Science, 2021, 12, 668042.	1.7	9
236	The environment exerts a greater influence than the transgene on the transcriptome of field-grown wheat expressing the Pm3b allele. Transgenic Research, 2015, 24, 87-97.	1.3	8
237	Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes. BMC Genomics, 2017, 18, 514.	1.2	8
238	Genetic Transformation of Recalcitrant Cassava by Embryo Selection and Increased Hormone Levels. Methods and Protocols, 2018, 1, 42.	0.9	8
239	A Flexible Protocol for Targeted Gene Co-expression Network Analysis. Methods in Molecular Biology, 2014, 1153, 285-299.	0.4	8
240	Engineering Virus-Induced African Cassava Mosaic Virus Resistance by Mimicking a Hypersensitive Reaction in Transgenic Cassava. , 2003, , 143-145.		8
241	Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses. Nature Communications, 2022, 13, .	5.8	8
242	Chloroplast mRNA 3′-End Nuclease Complex. Methods in Enzymology, 2001, 342, 408-419.	0.4	7
243	Function of the Retinoblastoma-related Protein in Plants. , 0, , 164-186.		7
244	Annotating novel genes by integrating synthetic lethals and genomic information. BMC Systems Biology, 2008, 2, 3.	3.0	7
245	Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays. Plant Methods, 2012, 8, 18.	1.9	7
246	The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining. Current Plant Biology, 2015, 2, 1-11.	2.3	7
247	Novel rice iron biofortification approaches using expression of <i>ZmYS1</i> and <i>OsTOM1</i> controlled by tissue-specific promoters. Journal of Experimental Botany, 2022, 73, 5440-5459.	2.4	7
248	A chloroplast transcription system from higher plants. Plant Molecular Biology Reporter, 1984, 2, 15-23.	1.0	6
249	TECHNICAL ADVANCE: EVE (external variance estimation) increases statistical power for detecting differentially expressed genes. Plant Journal, 2007, 52, 561-569.	2.8	5
250	Carboxylâ€methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant Journal, 2000, 24, 775-784.	2.8	5
251	Genetically modified crops: the truth unveiled. Agriculture and Food Security, 2015, 4, .	1.6	5
252	Transcriptional and Post-Transcriptional Regulation of Chloroplast Gene Expression. , 1987, , 135-148.		5

#	Article	IF	CITATIONS
253	Network analysis of systems elements. , 2007, 97, 331-351.		5
254	Natural Variation in Vitamin B1 and Vitamin B6 Contents in Rice Germplasm. Frontiers in Plant Science, 2022, 13, 856880.	1.7	5
255	Preparation and Analysis of Plant and Plastid Proteomes by 2DE Methods in Molecular Biology, 2009, 519, 205-220.	0.4	4
256	Mass Spectrometry-Based Proteomics: Identifying Plant Proteins. , 0, , 33-45.		3
257	Transcript Profiling in Arabidopsis with Genome Tiling Microarrays. Methods in Molecular Biology, 2013, 1067, 35-49.	0.4	3
258	Organization and expression of the genes encoding ribulose-1,5-bisphosphate carboxylase in higher plants. , 1988, , 621-643.		3
259	Frequency and character of alternative somatic recombination fates of paralogous genes during T-DNA integration. Molecular Genetics and Genomics, 2005, 274, 91-102.	1.0	2
260	Prenylation of the Floral Transcription Factor APETALA1 Modulates Its Function. Plant Cell, 2000, 12, 1257.	3.1	1
261	Controlled vocabularies for plant anatomical parts optimized for use in data analysis tools and for cross-species studies. Plant Methods, 2013, 9, 33.	1.9	1
262	A tribute to Lars Hennig (1970–2018). Journal of Experimental Botany, 2018, 69, 4989-4990.	2.4	1
263	Cracking the Interorganellar Communication Codes. FASEB Journal, 2017, 31, 617.2.	0.2	1
264	Differences in pattern of a DNA protein complex isolated from vegetative cells and spores of Bacillus subtilis. Molecular Genetics and Genomics, 1978, 159, 213-218.	2.4	0
265	New Series of Editor's Choice Articles. Career Choices. Plant Physiology, 2001, 126, 923-923.	2.3	Ο
266	Editorial Plant Molecular Biology: A Commitment to Excellence in Plant Sciences. Plant Molecular Biology, 2003, 52, vii-viii.	2.0	0
267	Reducing Java internet project risks. , 2006, , .		Ο
268	Species-Dependent Proteomics. , 0, , 343-378.		0
269	Etioplast. , 0, , 351-360.		0
270	Proteomics and its application in plant biotechnology. , 2012, , 55-65.		0

Proteomics and its application in plant biotechnology. , 2012, , 55-65. 270

#	Article	IF	CITATIONS
271	RNA-Mediated Resistance to Cassava Geminiviruses in Transgenic Cassava. , 2007, , 201-203.		Ο
272	Regulation of Plastid Gene Expression. , 1994, , 361-370.		0
273	Chloroplast Gene Expression: Regulation at Multiple Levels. , 1996, , 565-587.		Ο