
Guillermo Rodrigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15271-15276.	3.3	150
2	DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics, 2008, 24, 2554-2556.	1.8	105
3	Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 2009, 10, R96.	13.9	81
4	Genetdes: automatic design of transcriptional networks. Bioinformatics, 2007, 23, 1857-1858.	1.8	65
5	A Meta-Analysis Reveals the Commonalities and Differences in Arabidopsis thaliana Response to Different Viral Pathogens. PLoS ONE, 2012, 7, e40526.	1.1	64
6	Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, 2017, 68, erw455.	2.4	61
7	Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection. BMC Genomics, 2016, 17, 87.	1.2	57
8	Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virology Journal, 2008, 5, 92.	1.4	54
9	Empirical model and in vivo characterization of the bacterial response to synthetic gene expression show that ribosome allocation limits growth rate. Biotechnology Journal, 2011, 6, 773-783.	1.8	54
10	Towards an integrated molecular model of plant–virus interactions. Current Opinion in Virology, 2012, 2, 719-724.	2.6	54
11	AutoBioCAD: Full Biodesign Automation of Genetic Circuits. ACS Synthetic Biology, 2013, 2, 230-236.	1.9	46
12	Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors. Nucleic Acids Research, 2011, 39, e138-e138.	6.5	39
13	Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. Plant Communications, 2020, 1, 100099.	3.6	38
14	Asmparts: assembly of biological model parts. Systems and Synthetic Biology, 2007, 1, 167-170.	1.0	35
15	A systems biology approach to the evolution of plant–virus interactions. Current Opinion in Plant Biology, 2011, 14, 372-377.	3.5	31
16	A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends in Genetics, 2013, 29, 529-536.	2.9	31
17	Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression. Nucleic Acids Research, 2015, 43, 5158-5170.	6.5	31
18	Intrinsic adaptive value and early fate of gene duplication revealed by a bottom-up approach. ELife, 2018.7	2.8	30

Guillermo Rodrigo

#	Article	IF	CITATIONS
19	Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization. PLoS Computational Biology, 2013, 9, e1003172.	1.5	29
20	Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci. Journal of the Royal Society Interface, 2014, 11, 20140555.	1.5	29
21	Model-based redesign of global transcription regulation. Nucleic Acids Research, 2009, 37, e38-e38.	6.5	28
22	Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. Molecular Plant-Microbe Interactions, 2015, 28, 1304-1315.	1.4	28
23	Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation. PLoS ONE, 2011, 6, e16904.	1.1	26
24	RiboMaker: computational design of conformation-based riboregulation. Bioinformatics, 2014, 30, 2508-2510.	1.8	24
25	Optimal viral strategies for bypassing RNA silencing. Journal of the Royal Society Interface, 2011, 8, 257-268.	1.5	21
26	Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus—Tobacco Case Study. Molecular Biology and Evolution, 2018, 35, 1599-1615.	3.5	21
27	Computational design of digital and memory biological devices. Systems and Synthetic Biology, 2007, 1, 183-195.	1.0	19
28	Diagnostics of Infections Produced by the Plant Viruses TMV, TEV, and PVX with CRISPR-Cas12 and CRISPR-Cas13. ACS Synthetic Biology, 2022, 11, 2384-2393.	1.9	19
29	Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Letters, 2012, 586, 2037-2042.	1.3	18
30	Towards the automated engineering of a synthetic genome. Molecular BioSystems, 2009, 5, 733.	2.9	16
31	Modular model-based design for heterologous bioproduction in bacteria. Current Opinion in Biotechnology, 2009, 20, 272-279.	3.3	14
32	Genetic Redundancies Enhance Information Transfer in Noisy Regulatory Circuits. PLoS Computational Biology, 2016, 12, e1005156.	1.5	14
33	Virus-host interactome: Putting the accent on how it changes. Journal of Proteomics, 2017, 156, 1-4.	1.2	12
34	Model-based design of RNA hybridization networks implemented in living cells. Nucleic Acids Research, 2017, 45, 9797-9808.	6.5	12
35	Theoretical and experimental analysis of the forced Lacl-AraC oscillator with a minimal gene regulatory model. Chaos, 2013, 23, 025109.	1.0	11
36	Network design meets in silico evolutionary biology. Biochimie, 2010, 92, 746-752.	1.3	10

Guillermo Rodrigo

#	Article	IF	CITATIONS
37	Integral Control of Plant Gravitropism through the Interplay of Hormone Signaling and Gene Regulation. Biophysical Journal, 2011, 101, 757-763.	0.2	10
38	Bacterial Population Control with Macroscopic HKUST Crystals. ACS Applied Materials & Interfaces, 2019, 11, 19878-19883.	4.0	10
39	CRISPR-Mediated Strand Displacement Logic Circuits with Toehold-Free DNA. ACS Synthetic Biology, 2021, 10, 950-956.	1.9	10
40	CRISPR-Cas12a-Based Detection of SARS-CoV-2 Harboring the E484K Mutation. ACS Synthetic Biology, 2021, 10, 3595-3599.	1.9	10
41	Computational design and evolution of the oscillatory response under light–dark cycles. Biochimie, 2008, 90, 888-897.	1.3	9
42	Antagonistic autoregulation speeds up a homogeneous response in Escherichia coli. Scientific Reports, 2016, 6, 36196.	1.6	9
43	Boolean Computation in Plants Using Post-translational Genetic Control and a Visual Output Signal. ACS Synthetic Biology, 2018, 7, 2322-2330.	1.9	9
44	Suprathreshold Stochastic Resonance behind Cancer. Trends in Biochemical Sciences, 2018, 43, 483-485.	3.7	8
45	Binary addition in a living cell based on riboregulation. PLoS Genetics, 2018, 14, e1007548.	1.5	8
46	Molecular noise can minimize the collective sensitivity of a clonal heterogeneous cell population. Journal of Theoretical Biology, 2017, 416, 38-44.	0.8	7
47	Gene regulation by a protein translation factor at the single-cell level. PLoS Computational Biology, 2022, 18, e1010087.	1.5	7
48	Describing the structural robustness landscape of bacterial small RNAs. BMC Evolutionary Biology, 2012, 12, 52.	3.2	6
49	Exploring the Dynamics and Mutational Landscape of Riboregulation with a Minimal Synthetic Circuit in Living Cells. Biophysical Journal, 2015, 109, 1070-1076.	0.2	6
50	Engineering a Circular Riboregulator in <i>Escherichia coli</i> . Biodesign Research, 2020, 2020, .	0.8	6
51	Functionalization of an Antisense Small RNA. Journal of Molecular Biology, 2016, 428, 889-892.	2.0	5
52	Insights about collective decision-making at the genetic level. Biophysical Reviews, 2020, 12, 19-24.	1.5	4
53	Metal–organic frameworks in pursuit of size: the development of macroscopic single crystals. Dalton Transactions, 2022, 51, 7775-7782.	1.6	4
54	Evolutionary mechanisms of circadian clocks. Open Life Sciences, 2007, 2, 233-253.	0.6	3

GUILLERMO RODRIGO

#	Article	IF	CITATIONS
55	Post-transcriptional bursting in genes regulated by small RNA molecules. Physical Review E, 2018, 97, 032401.	0.8	3
56	Nonequilibrium thermodynamics of the RNA-RNA interaction underlying a genetic transposition program. Physical Review E, 2021, 103, 042410.	0.8	3
57	Molecular signatures of silencing suppression degeneracy from a complex RNA virus. PLoS Computational Biology, 2021, 17, e1009166.	1.5	3
58	Regulatory RNA Design Through Evolutionary Computation and Strand Displacement. Methods in Molecular Biology, 2015, 1244, 63-78.	0.4	3
59	MicroRNA Precursors Are Not Structurally Robust but Plastic. Genome Biology and Evolution, 2013, 5, 181-186.	1.1	2
60	Evolutionary impact of copy number variation rates. BMC Research Notes, 2017, 10, 393.	0.6	2
61	Modulation of Intracellular O ₂ Concentration in <i>Escherichia coli</i> Strains Using Oxygen Consuming Devices. ACS Synthetic Biology, 2018, 7, 1742-1752.	1.9	2
62	Empirical modeling of material composition and size in MOFs prepared with ligand mixtures. Dalton Transactions, 2019, 48, 2881-2885.	1.6	2
63	Computational Design in Synthetic Biology. , 2009, , 49-63.		2
64	<i>Ab initio</i> scaling laws between noise and mean of gene expression. Physical Review E, 2019, 100, 032415.	0.8	1
65	Probing the operability regime of an engineered ribocomputing unit in terms of dynamic range maintenance with extracellular changes and time. Journal of Biological Engineering, 2020, 14, 12.	2.0	Ο