Hongbin Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291829/publications.pdf

Version: 2024-02-01

304743 345221 6,126 35 22 36 h-index citations g-index papers 38 38 38 11631 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews, 2012, 112, 6027-6053.	47.7	3,024
2	Controlled Synthesis of Highly Crystalline MoS ₂ Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013, 135, 5304-5307.	13.7	655
3	Graphene and Grapheneâ€ike Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	10.0	535
4	A low-temperature method to produce highly reduced graphene oxide. Nature Communications, 2013, 4, 1539.	12.8	436
5	Synthesis of amorphous nickel–cobalt–manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Materials, 2019, 17, 194-203.	18.0	236
6	Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chemical Communications, 2010, 46, 5882.	4.1	153
7	Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosensors and Bioelectronics, 2012, 35, 63-68.	10.1	150
8	Strong reduced graphene oxide–polymer composites: hydrogels and wires. RSC Advances, 2012, 2, 6988.	3.6	98
9	Facile synthesis of N-doped carbon layer encapsulated Fe2N as an efficient catalyst for oxygen reduction reaction. Carbon, 2018, 127, 636-642.	10.3	77
10	Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction. Nanoscale, 2013, 5, 10839.	5.6	75
11	Titanium Nitride Nanocrystals on Nitrogenâ€Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry - A European Journal, 2013, 19, 14781-14786.	3.3	73
12	Hollow Porous LiMn ₂ O ₄ Microcubes as Rechargeable Lithium Battery Cathode with High Electrochemical Performance. Small, 2012, 8, 858-862.	10.0	69
13	SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm, 2012, 14, 5177.	2.6	67
14	Hybrid Mechanoresponsive Polymer Wires Under Force Activation. Advanced Materials, 2013, 25, 1729-1733.	21.0	49
15	Almond-derived origami-like hierarchically porous and N/O co-functionalized carbon sheet for high-performance supercapacitor. Applied Surface Science, 2019, 467-468, 229-235.	6.1	49
16	Sucroseâ€Assisted Loading of LiFePO ₄ Nanoparticles on Graphene for Highâ€Performance Lithiumâ€Ion Battery Cathodes. Chemistry - A European Journal, 2013, 19, 5631-5636.	3.3	45
17	Facile and efficient exfoliation of inorganic layered materials using liquid alkali metal alloys. Chemical Communications, 2015, 51, 10961-10964.	4.1	40
18	Room-temperature carbon coating on MoS2/Graphene hybrids with carbon dioxide for enhanced sodium storage. Carbon, 2019, 153, 217-224.	10.3	38

#	Article	IF	Citations
19	Highly reduced graphene oxide supported Pt nanocomposites as highly efficient catalysts for methanol oxidation. Chemical Communications, 2015, 51, 2418-2420.	4.1	37
20	Carbon coated MnO@Mn ₃ N ₂ core–shell composites for high performance lithium ion battery anodes. Nanoscale, 2014, 6, 14697-14701.	5 . 6	35
21	Direct Exfoliation of Graphite to Graphene by a Facile Chemical Approach. Small, 2014, 10, 2233-2238.	10.0	28
22	Spraying Coagulationâ€Assisted Hydrothermal Synthesis of MoS ₂ /Carbon/Graphene Composite Microspheres for Lithiumâ€Ion Battery Applications. ChemElectroChem, 2017, 4, 2027-2036.	3 . 4	24
23	Porous carbon matrix-encapsulated MnO in situ derived from metal-organic frameworks as advanced anode materials for Li-ion capacitors. Science China Materials, 2022, 65, 59-68.	6.3	21
24	Nitrogen-doped hierarchically porous carbon derived from cherry stone as a catalyst support for purification of terephthalic acid. Applied Surface Science, 2018, 447, 57-62.	6.1	20
25	Pt-Based High-Entropy Alloy Nanoparticles as Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. ACS Applied Nano Materials, 2022, 5, 9810-9817.	5.0	19
26	A mechanical actuated SnO ₂ nanowire for small molecules sensing. Chemical Communications, 2013, 49, 1017-1019.	4.1	11
27	MoS 2 Nanosheets Anchored on Melamineâ€Spongesâ€Derived Nitrogenâ€Doped Carbon Microtubes as Anode for Highâ€Rate Sodiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 6148-6154.	1.5	7
28	Ultrafast and surfactant-free synthesis of Sub-3 nm nanoalloys by shear-assisted liquid-metal reduction. Nanoscale Advances, 2020, 2, 4873-4880.	4.6	7
29	Waste cigarette butt-derived nitrogen-doped porous carbon as a non-mercury catalyst for acetylene hydrochlorination. New Journal of Chemistry, 2021, 45, 19358-19363.	2.8	7
30	Defect engineering in oxides by liquid Na-K alloy for oxygen evolution reaction. Applied Surface Science, 2021, 544, 148813.	6.1	7
31	Surface topological synthesis of polymetallic oxides coatings on lithium layered oxide for improved capacity and high-rate performance. Journal of Colloid and Interface Science, 2022, 617, 293-303.	9.4	6
32	Citrate-mediated synthesis of highly crystalline transition metal hexacyanoferrates and their Na ion storage properties. Applied Surface Science, 2020, 531, 147336.	6.1	5
33	Robust Carbon-Stabilization of Few-Layer Black Phosphorus for Superior Oxygen Evolution Reaction. Coatings, 2020, 10, 695.	2.6	5
34	MoS2@N-doped graphene microtubes for fast sodium ion storage. Applied Surface Science, 2021, 564, 150394.	6.1	2
35	Force Sensors: Hybrid Mechanoresponsive Polymer Wires Under Force Activation (Adv. Mater. 12/2013). Advanced Materials, 2013, 25, 1658-1658.	21.0	0

3