
Mehmet M Altintas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genetics, 2005, 37, 739-744.	21.4	747
2	Modification of kidney barrier function by the urokinase receptor. Nature Medicine, 2008, 14, 55-63.	30.7	501
3	Soluble Urokinase Receptor and Chronic Kidney Disease. New England Journal of Medicine, 2015, 373, 1916-1925.	27.0	338
4	Induction of TRPC6 Channel in Acquired Forms of Proteinuric Kidney Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 29-36.	6.1	272
5	Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. Journal of Clinical Investigation, 2007, 117, 2095-2104.	8.2	188
6	A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nature Medicine, 2017, 23, 945-953.	30.7	176
7	Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. Journal of Lipid Research, 2011, 52, 480-488.	4.2	153
8	Soluble Urokinase Receptor and Acute Kidney Injury. New England Journal of Medicine, 2020, 382, 416-426.	27.0	149
9	Podocytes. F1000Research, 2016, 5, 114.	1.6	133
10	CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. Journal of Clinical Investigation, 2011, 121, 3965-3980.	8.2	124
11	Role of Podocyte B7-1 in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 1415-1429.	6.1	114
12	CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. Journal of Clinical Investigation, 2017, 127, 1271-1283.	8.2	100
13	Prkdc participates in mitochondrial genome maintenance and prevents Adriamycin-induced nephropathy in mice. Journal of Clinical Investigation, 2010, 120, 4055-4064.	8.2	92
14	Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. Journal of Biological Chemistry, 2017, 292, 732-747.	3.4	74
15	A Podocyte-Based Automated Screening Assay Identifies Protective Small Molecules. Journal of the American Society of Nephrology: JASN, 2015, 26, 2741-2752.	6.1	53
16	Podocyte GTPases regulate kidney filter dynamics. Kidney International, 2012, 81, 1053-1055.	5.2	52
17	Transient Receptor Potential Channel 6 (TRPC6) Protects Podocytes during Complement-mediated Glomerular Disease. Journal of Biological Chemistry, 2013, 288, 36598-36609.	3.4	49
18	Single-nephron proteomes connect morphology and function in proteinuric kidney disease. Kidney International. 2018, 93, 1308-1319.	5.2	49

MEHMET M ALTINTAS

#	Article	IF	CITATIONS
19	Apoptosis, mastocytosis, and diminished adipocytokine gene expression accompany reduced epididymal fat mass in long-standing diet-induced obese mice. Lipids in Health and Disease, 2011, 10, 198.	3.0	46
20	Kinetic modeling to optimize pentose fermentation inZymomonas mobilis. Biotechnology and Bioengineering, 2006, 94, 273-295.	3.3	45
21	Apoptosis and Compensatory Proliferation Signaling Are Coupled by Crkl-Containing Microvesicles. Developmental Cell, 2017, 41, 674-684.e5.	7.0	42
22	Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production. Process Biochemistry, 2004, 39, 2097-2108.	3.7	39
23	TRPC5 Does Not Cause or Aggravate Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 409-415.	6.1	38
24	Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme and Microbial Technology, 2002, 31, 640-647.	3.2	36
25	Small molecule agonists of integrin CD11b/CD18 do not induce global conformational changes and are significantly better than activating antibodies in reducing vascular injury. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3696-3710.	2.4	31
26	Soluble Urokinase Receptor and the Kidney Response in Diabetes Mellitus. Journal of Diabetes Research, 2017, 2017, 1-9.	2.3	28
27	Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice. Lipids in Health and Disease, 2012, 11, 21.	3.0	21
28	Metabolic Changes in Peripheral Blood Mononuclear Cells Isolated From Patients With End Stage Renal Disease. Frontiers in Endocrinology, 2021, 12, 629239.	3.5	19
29	Nonimmune cell–derived ICOS ligand functions as a renoprotective αvβ3 integrin–selective antagonist. Journal of Clinical Investigation, 2019, 129, 1713-1726.	8.2	19
30	Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein. Process Biochemistry, 2002, 37, 1439-1445.	3.7	17
31	Enzymatic disease of the podocyte. Pediatric Nephrology, 2010, 25, 1017-1023.	1.7	15
32	Plasmid stability in a recombinantS cerevisiaestrain secreting a bifunctional fusion protein. Journal of Chemical Technology and Biotechnology, 2001, 76, 612-618.	3.2	13
33	Optimal substrate feeding policy for fed-batch cultures of S. cerevisiae expressing bifunctional fusion protein displaying amylolytic activities. Enzyme and Microbial Technology, 2003, 33, 262-269.	3.2	12
34	Reduction of Proteinuria through Podocyte Alkalinization. Journal of Biological Chemistry, 2014, 289, 17454-17467.	3.4	12
35	High-content screening assay-based discovery of paullones as novel podocyte-protective agents. American Journal of Physiology - Renal Physiology, 2018, 314, F280-F292.	2.7	12
36	Podocytes exhibit a specialized protein quality control employing derlin-2 in kidney disease. American Journal of Physiology - Renal Physiology, 2018, 314, F471-F482.	2.7	11

MEHMET M ALTINTAS

#	Article	IF	CITATIONS
37	Establishment of Protein Delivery Systems Targeting Podocytes. PLoS ONE, 2010, 5, e11837.	2.5	9
38	Simultaneous stabilization of actin cytoskeleton in multiple nephron-specific cells protects the kidney from diverse injury. Nature Communications, 2022, 13, 2422.	12.8	9
39	Bridges to cross, burn, and mend: cells of renin lineage as podocyte progenitors. American Journal of Physiology - Renal Physiology, 2015, 309, F499-F500.	2.7	6
40	Podocytes. American Journal of Pathology, 2019, 189, 226-228.	3.8	5
41	Renal cell markers: lighthouses for managing renal diseases. American Journal of Physiology - Renal Physiology, 2021, 321, F715-F739.	2.7	5
42	Transfer function approach in structured modeling of recombinant yeast utilizing starch. Process Biochemistry, 2004, 39, 1237-1248.	3.7	4
43	Structure of the Kidney Slit Diaphragm Adapter Protein CD2-Associated Protein as Determined with Electron Microscopy. Journal of the American Society of Nephrology: JASN, 2014, 25, 1465-1473.	6.1	4
44	A High-Content Screening Technology for Quantitatively Studying Podocyte Dynamics. Advances in Chronic Kidney Disease, 2017, 24, 183-188.	1.4	4
45	From Infancy to Fancy: A Glimpse into the Evolutionary Journey of Podocytes in Culture. Kidney360, 2021, 2, 385-397.	2.1	4
46	Purification of Taql endonuclease from Thermus aquaticus. Journal of Chromatography A, 1998, 828, 373-381.	3.7	3
47	More expression, less function: cleaved dynamin in glomerular kidney disease. Journal of Pathology, 2018, 247, 413-415.	4.5	3
48	CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. Journal of Clinical Investigation, 2012, 122, 780-780.	8.2	3
49	Emerging Roles for Metabolic Engineering - Understanding Primitive and Complex Metabolic Models and Their Relevance to Healthy and Diseased Kidney Podocytes. Current Chemical Biology, 2008, 2, 68-82.	0.5	1
50	Deiodinase-3 is a thyrostat to regulate podocyte homeostasis. EBioMedicine, 2021, 72, 103617.	6.1	1
51	Emerging Roles for Metabolic Engineering - Understanding Primitive and Complex Metabolic Models and Their Relevance to Healthy and Diseased Kidney Podocytes. Current Chemical Biology, 2008, 2, 68-82.	0.5	0
52	CD2AP Structure And Progression Of Renal Disease. Biophysical Journal, 2009, 96, 132a-133a.	0.5	0
53	Plasmid stability in a recombinant S cerevisiae strain secreting a bifunctional fusion protein. Journal of Chemical Technology and Biotechnology, 2001, 76, 612-618.	3.2	0