Yi Yan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291640/publications.pdf

Version: 2024-02-01

		6254	11939
241	20,287	80	134
papers	citations	h-index	g-index
243	243	243	21329
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 2001, 22, 231-241.	11.4	622
2	Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nature Materials, 2006, 5, 791-796.	27.5	612
3	Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotechnology, 2009, 4, 457-463.	31.5	583
4	Biodegradable nanostructures with selective lysis of microbial membranes. Nature Chemistry, 2011, 3, 409-414.	13.6	522
5	The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 1228-1246.	13.7	459
6	Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chemical Communications, 2005, , 4312.	4.1	418
7	pH-Triggered Thermally Responsive Polymer Core-Shell Nanoparticles for Drug Delivery. Advanced Materials, 2005, 17, 318-323.	21.0	377
8	Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide) Hydrogels. Langmuir, 2001, 17, 6094-6099.	3. 5	368
9	Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28, 540-549.	11.4	337
10	Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today, 2012, 7, 201-222.	11.9	312
11	Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials, 2012, 33, 6593-6603.	11.4	285
12	Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(-isopropylacrylamidedimethylacrylamide)poly(,-lactide-glycolide) with varying compositions. Biomaterials, 2005, 26, 5064-5074.	11.4	266
13	Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid and Interface Science, 2011, 16, 182-194.	7.4	265
14	A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nature Communications, 2018, 9, 917.	12.8	261
15	Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chemical Engineering Science, 2000, 55, 2223-2236.	3.8	254
16	Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials, 2008, 29, 1509-1517.	11.4	246
17	Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Journal of Controlled Release, 2000, 69, 81-96.	9.9	244
18	Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Advanced Drug Delivery Reviews, 2014, 78, 46-62.	13.7	233

#	Article	IF	Citations
19	Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews, 2014, 78, 28-45.	13.7	231
20	Antimicrobial and Antifouling Hydrogels Formed In Situ from Polycarbonate and Poly(ethylene) Tj ETQq0 0 0 rgBT	/Qyerlock	10 Jf 50 70
21	Brushâ€Like Polycarbonates Containing Dopamine, Cations, and PEG Providing a Broadâ€6pectrum, Antibacterial, and Antifouling Surface via Oneâ€6tep Coating. Advanced Materials, 2014, 26, 7346-7351.	21.0	227
22	Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials, 2009, 30, 3100-3109.	11.4	194
23	Co-delivery of drugs and plasmid DNA for cancer therapy. Advanced Drug Delivery Reviews, 2016, 98, 41-63.	13.7	191
24	Multifunctional Core/Shell Nanoparticles Self-Assembled from pH-Induced Thermosensitive Polymers for Targeted Intracellular Anticancer Drug Delivery. Advanced Functional Materials, 2007, 17, 355-362.	14.9	187
25	Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials, 2007, 28, 1423-1433.	11.4	187
26	Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today, 2009, 4, 302-317.	11.9	180
27	Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. Journal of Controlled Release, 2005, 102, 361-372.	9.9	179
28	Synthetic cationic amphiphilic \hat{l}_{\pm} -helical peptides as antimicrobial agents. Biomaterials, 2011, 32, 2204-2212.	11.4	176
29	Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials, 2014, 35, 1096-1108.	11.4	172
30	Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials, 2010, 31, 8063-8071.	11.4	170
31	Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials, 2010, 31, 2637-2645.	11.4	161
32	Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials, 2010, 31, 7298-7307.	11.4	161
33	Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials, 2012, 33, 1146-1153.	11.4	159
34	Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nature Biomedical Engineering, 2021, 5, 613-623.	22.5	157
35	The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials, 2009, 30, 919-927.	11.4	155
36	The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Biomaterials, 2012, 33, 1921-1928.	11.4	151

#	Article	IF	CITATIONS
37	Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Advanced Healthcare Materials, 2018, 7, e1701392.	7.6	145
38	Ovarian Cancer Immunotherapy Using PD‣1 siRNA Targeted Delivery from Folic Acidâ€Functionalized Polyethylenimine: Strategies to Enhance T Cell Killing. Advanced Healthcare Materials, 2015, 4, 1180-1189.	7.6	140
39	Effect of Mixed Solvents on Characteristics of Poly(N-isopropylacrylamide) Gels. Langmuir, 2002, 18, 2538-2542.	3.5	139
40	Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials, 2007, 28, 1730-1740.	11.4	128
41	Broadâ€Spectrum Antimicrobial and Biofilmâ€Disrupting Hydrogels: Stereocomplexâ€Driven Supramolecular Assemblies. Angewandte Chemie - International Edition, 2013, 52, 674-678.	13.8	128
42	Biodegradable poly(ethylene glycol)–peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials, 2009, 30, 1453-1461.	11.4	126
43	The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials, 2012, 33, 2971-2979.	11.4	126
44	Thermosensitive Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Expanded Network Structures and Improved Oscillating Swellingâ "Deswelling Properties. Langmuir, 2002, 18, 2013-2018.	3.5	124
45	Antimicrobial Polycarbonates: Investigating the Impact of Balancing Charge and Hydrophobicity Using a Same-Centered Polymer Approach. Biomacromolecules, 2013, 14, 4331-4339.	5.4	124
46	Advanced Materials for Coâ€Delivery of Drugs and Genes in Cancer Therapy. Advanced Healthcare Materials, 2012, 1, 373-392.	7.6	123
47	Synthetic hydrogels for controlled stem cell differentiation. Soft Matter, 2010, 6, 67-81.	2.7	122
48	Cross-linked enzyme aggregates (CLEAs) with controlled particles: Application to Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, 2006, 43, 124-127.	1.8	121
49	The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials, 2010, 31, 2874-2881.	11.4	120
50	Biodegradable Broad-Spectrum Antimicrobial Polycarbonates: Investigating the Role of Chemical Structure on Activity and Selectivity. Macromolecules, 2013, 46, 8797-8807.	4.8	120
51	The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials, 2013, 34, 3132-3140.	11.4	120
52	The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5, 3834.	5.6	120
53	Synergistic Coâ€Delivery of Membraneâ€Disrupting Polymers with Commercial Antibiotics against Highly Opportunistic Bacteria. Advanced Materials, 2013, 25, 6730-6736.	21.0	120
54	Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials, 2004, 25, 2619-2628.	11.4	118

#	Article	IF	CITATIONS
55	Core–Shell–Corona Micelle Stabilized by Reversible Crossâ€Linkage for Intracellular Drug Delivery. Macromolecular Rapid Communications, 2010, 31, 1201-1206.	3.9	117
56	Antimicrobial Polycarbonates: Investigating the Impact of Nitrogen-Containing Heterocycles as Quaternizing Agents. Macromolecules, 2014, 47, 1285-1291.	4.8	117
57	Short Synthetic <i>β</i> ê6heet Forming Peptide Amphiphiles as Broad Spectrum Antimicrobials with Antibiofilm and Endotoxin Neutralizing Capabilities. Advanced Functional Materials, 2013, 23, 3682-3692.	14.9	116
58	Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamics properties. Biomaterials, 2002, 23, 1313-1318.	11.4	115
59	Mixed Micelle Formation through Stereocomplexation between Enantiomeric Poly(lactide) Block Copolymers. Macromolecules, 2009, 42, 25-29.	4.8	113
60	Simple Approach to Stabilized Micelles Employing Miktoarm Terpolymers and Stereocomplexes with Application in Paclitaxel Delivery. Biomacromolecules, 2009, 10, 1460-1468.	5.4	111
61	Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. Journal of Controlled Release, 2014, 193, 9-26.	9.9	109
62	Thermally responsive core-shell nanoparticles self-assembled from cholesteryl end-capped and grafted polyacrylamides:. Biomaterials, 2004, 25, 4297-4308.	11.4	107
63	Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomaterials, 2014, 35, 2032-2038.	11.4	105
64	Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Biomaterials, 2011, 32, 5505-5514.	11.4	102
65	Addressing Drug Resistance in Cancer with Macromolecular Chemotherapeutic Agents. Journal of the American Chemical Society, 2018, 140, 4244-4252.	13.7	100
66	Organocatalytic Approach to Amphiphilic Comb-Block Copolymers Capable of Stereocomplexation and Self-Assembly. Biomacromolecules, 2008, 9, 3051-3056.	5.4	99
67	Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials, 2020, 252, 120078.	11.4	99
68	Polymer- and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today, 2010, 5, 296-312.	11.9	98
69	Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials, 2010, 31, 1751-1756.	11.4	97
70	Engineering Polymersomes for Diagnostics and Therapy. Advanced Healthcare Materials, 2018, 7, e1701276.	7.6	97
71	Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection. Biomaterials, 2013, 34, 7971-7979.	11.4	96
72	Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. Journal of Controlled Release, 2005, 102, 569-581.	9.9	95

#	Article	IF	CITATIONS
73	Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic \hat{l}^2 -sheet forming peptide amphiphiles. Biomaterials, 2014, 35, 1315-1325.	11.4	92
74	A halogen bond-mediated highly active artificial chloride channel with high anticancer activity. Chemical Science, 2018, 9, 4044-4051.	7.4	92
75	Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today, 2010, 5, 515-523.	11.9	90
76	Broad-Spectrum Antimicrobial Polycarbonate Hydrogels with Fast Degradability. Biomacromolecules, 2015, 16, 1169-1178.	5.4	90
77	Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector. Biomaterials, 2008, 29, 4838-4846.	11.4	89
78	Injectable Hydrogels from Triblock Copolymers of Vitamin Eâ€Functionalized Polycarbonate and Poly(ethylene glycol) for Subcutaneous Delivery of Antibodies for Cancer Therapy. Advanced Functional Materials, 2014, 24, 1538-1550.	14.9	88
79	Broad-Spectrum Antimicrobial Supramolecular Assemblies with Distinctive Size and Shape. ACS Nano, 2012, 6, 9191-9199.	14.6	87
80	Efficient Delivery of Bcl-2-Targeted siRNA Using Cationic Polymer Nanoparticles: Downregulating mRNA Expression Level and Sensitizing Cancer Cells to Anticancer Drug. Biomacromolecules, 2009, 10, 41-48.	5.4	83
81	Polymerizing Base Sensitive Cyclic Carbonates Using Acid Catalysis. ACS Macro Letters, 2013, 2, 306-312.	4.8	83
82	Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 297-305.	3.3	83
83	A Simple and Facile Approach to Aliphatic <i>N</i> Substituted Functional Eight-Membered Cyclic Carbonates and Their Organocatalytic Polymerization. Journal of the American Chemical Society, 2015, 137, 13851-13860.	13.7	81
84	Highly potent antimicrobial polyionenes with rapid killing kinetics, skin biocompatibility and inÂvivo bactericidal activity. Biomaterials, 2017, 127, 36-48.	11.4	81
85	Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. Journal of Controlled Release, 2003, 89, 167-177.	9.9	80
86	The role of PEG architecture and molecular weight in the gene transfection performance of PEGylated poly(dimethylaminoethyl methacrylate) based cationicApolymers. Biomaterials, 2011, 32, 2369-2378.	11.4	79
87	Supramolecular high-aspect ratio assemblies with strong antifungal activity. Nature Communications, 2013, 4, 2861.	12.8	79
88	Computational studies on self-assembled paclitaxel structures: Templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials, 2009, 30, 6556-6563.	11.4	78
89	Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-b-poly(d,l-lactide) Microspheres for Protein Delivery. Biomacromolecules, 2003, 4, 1784-1793.	5.4	77
90	Disruption of drug-resistant biofilms using de novo designed short \hat{l}_{\pm} -helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomaterialia, 2017, 57, 103-114.	8.3	77

#	Article	IF	Citations
91	Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2020, 160, 78-104.	13.7	76
92	Accessing New Materials through Polymerization and Modification of a Polycarbonate with a Pendant Activated Ester. Macromolecules, 2013, 46, 1283-1290.	4.8	74
93	Functional polycarbonates and their self-assemblies as promising non-viral vectors. Journal of Controlled Release, 2009, 139, 40-47.	9.9	73
94	Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide): synthesis, temperature-sensitivity, and morphologies. Journal of Colloid and Interface Science, 2003, 266, 295-303.	9.4	72
95	Formation of Disk- and Stacked-Disk-like Self-Assembled Morphologies from Cholesterol-Functionalized Amphiphilic Polycarbonate Diblock Copolymers. Macromolecules, 2013, 46, 4839-4846.	4.8	71
96	Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates. Polymer Chemistry, 2016, 7, 2105-2111.	3.9	71
97	Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) for controlled delivery of paclitaxel. Molecular BioSystems, 2005, 1, 158.	2.9	70
98	POLYMERIC CORE-SHELL NANOPARTICLES FOR THERAPEUTICS. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 557-562.	1.9	70
99	Synthesis and Characterization of Cationic Micelles Self-Assembled from a Biodegradable Copolymer for Gene Delivery. Biomacromolecules, 2007, 8, 1028-1037.	5.4	70
100	Dual pH-Responsive Shell-Cleavable Polycarbonate Micellar Nanoparticles for in Vivo Anticancer Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19355-19364.	8.0	70
101	Main-chain imidazolium oligomer material as a selective biomimetic antimicrobial agent. Biomaterials, 2012, 33, 8625-8631.	11.4	69
102	Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomaterialia, 2016, 46, 211-220.	8.3	69
103	Injectable Biodegradable Poly(ethylene glycol)/RGD Peptide Hybrid Hydrogels for in vitro Chondrogenesis of Human Mesenchymal Stem Cells. Macromolecular Rapid Communications, 2010, 31, 1148-1154.	3.9	68
104	Antimicrobial/Antifouling Polycarbonate Coatings: Role of Block Copolymer Architecture. Macromolecules, 2015, 48, 1055-1064.	4.8	68
105	Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection. Acta Biomaterialia, 2018, 78, 78-88.	8.3	68
106	Selfâ€assembled Cationic Peptide Nanoparticles Capable of Inducing Efficient Gene Expression In Vitro. Advanced Functional Materials, 2008, 18, 943-951.	14.9	67
107	pH and redox dual-responsive biodegradable polymeric micelles with high drug loading for effective anticancer drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 431-442.	3.3	67
108	The self-assembly of biodegradable cationic polymer micelles as vectors for gene transfection. Biomaterials, 2007, 28, 5358-5368.	11.4	65

#	Article	IF	CITATIONS
109	Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials, 2013, 34, 10278-10286.	11.4	65
110	pH-sensitive polycarbonate micelles for enhanced intracellular release of anticancer drugs: a strategy to circumvent multidrug resistance. Polymer Chemistry, 2014, 5, 2621.	3.9	64
111	Hydrophilic Polycarbonates: Promising Degradable Alternatives to Poly(ethylene glycol)-Based Stealth Materials. Macromolecules, 2015, 48, 1673-1678.	4.8	64
112	Injectable Coacervate Hydrogel for Delivery of Anticancer Drug-Loaded Nanoparticles in vivo. ACS Applied Materials & Drug-Loaded Nanoparticles in vivo. ACS Applied Nanopa	8.0	63
113	Bacterial Outer Membraneâ€Coated Mesoporous Silica Nanoparticles for Targeted Delivery of Antibiotic Rifampicin against Gramâ€Negative Bacterial Infection In Vivo. Advanced Functional Materials, 2021, 31, 2103442.	14.9	62
114	Designing \hat{l}_{\pm} -helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis: Discerning the role of hydrophobicity and helicity. Acta Biomaterialia, 2015, 28, 99-108.	8.3	61
115	Structure-directing star-shaped block copolymers: Supramolecular vesicles for the delivery of anticancer drugs. Journal of Controlled Release, 2015, 208, 93-105.	9.9	60
116	Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. Journal of Antimicrobial Chemotherapy, 2016, 71, 2181-2191.	3.0	55
117	A Macromolecule Reversing Antibiotic Resistance Phenotype and Repurposing Drugs as Potent Antibiotics. Advanced Science, 2020, 7, 2001374.	11.2	53
118	Injectable Biodegradable Hydrogels from Vitamin D-Functionalized Polycarbonates for the Delivery of Avastin with Enhanced Therapeutic Efficiency against Metastatic Colorectal Cancer. Biomacromolecules, 2015, 16, 465-475.	5.4	51
119	The solid-state Ag/AgCl process as a highly sensitive detection mechanism for an electrochemical immunosensor. Chemical Communications, 2009, , 6231.	4.1	50
120	Delivery of Anticancer Drugs Using Polymeric Micelles Stabilized by Hydrogenâ€Bonding Urea Groups. Macromolecular Rapid Communications, 2010, 31, 1187-1192.	3.9	50
121	Biodegradable Antimicrobial Polycarbonates with In Vivo Efficacy against Multidrugâ€Resistant MRSA Systemic Infection. Advanced Healthcare Materials, 2015, 4, 2128-2136.	7.6	50
122	Broadâ€Spectrum Antimicrobial Star Polycarbonates Functionalized with Mannose for Targeting Bacteria Residing inside Immune Cells. Advanced Healthcare Materials, 2016, 5, 1272-1281.	7.6	50
123	Polymers with distinctive anticancer mechanism that kills MDR cancer cells and inhibits tumor metastasis. Biomaterials, 2019, 199, 76-87.	11.4	50
124	A Class of Cationic Triblock Amphiphilic Oligopeptides as Efficient Geneâ€Delivery Vectors. Advanced Materials, 2009, 21, 86-90.	21.0	49
125	Hierarchical Supermolecular Structures for Sustained Drug Release. Small, 2009, 5, 1504-1507.	10.0	49
126	Synergistic Anticancer Effects Achieved by Coâ€Delivery of TRAIL and Paclitaxel Using Cationic Polymeric Micelles. Macromolecular Bioscience, 2011, 11, 296-307.	4.1	49

#	Article	IF	CITATION
127	Broad-Spectrum Antimicrobial/Antifouling Soft Material Coatings Using Poly(ethylenimine) as a Tailorable Scaffold. Biomacromolecules, 2015, 16, 1967-1977.	5.4	49
128	Polycarbonate-Based Brush Polymers with Detachable Disulfide-Linked Side Chains. ACS Macro Letters, 2013, 2, 332-336.	4.8	48
129	Amphiphilic and Hydrophilic Block Copolymers from Aliphatic <i>N</i> -Substituted 8-Membered Cyclic Carbonates: A Versatile Macromolecular Platform for Biomedical Applications. Biomacromolecules, 2017, 18, 178-188.	5.4	48
130	A Supramolecularly Assisted Transformation of Blockâ€Copolymer Micelles into Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 4508-4512.	13.8	47
131	Synthetic \hat{l}^2 -sheet forming peptide amphiphiles for treatment of fungal keratitis. Biomaterials, 2015, 43, 44-49.	11.4	46
132	2-Amino-1,3-propane diols: a versatile platform for the synthesis of aliphatic cyclic carbonate monomers. Polymer Chemistry, 2013, 4, 2945.	3.9	45
133	Homogeneous isocyanate- and catalyst-free synthesis of polyurethanes in aqueous media. Green Chemistry, 2013, 15, 1121.	9.0	44
134	Phenformin-loaded polymeric micelles for targeting both cancer cells and cancer stem cells inÂvitro and inÂvivo. Biomaterials, 2014, 35, 9177-9186.	11.4	44
135	Antimicrobial coatings against biofilm formation: the unexpected balance between antifouling and bactericidal behavior. Polymer Chemistry, 2016, 7, 656-668.	3.9	44
136	Short Synthetic βâ€Sheet Antimicrobial Peptides for the Treatment of Multidrugâ€Resistant <i>Pseudomonas aeruginosa</i> Burn Wound Infections. Advanced Healthcare Materials, 2017, 6, 1601134.	7.6	44
137	Benzyl Chloride-Functionalized Polycarbonates: A Versatile Platform for the Synthesis of Functional Biodegradable Polycarbonates. Macromolecules, 2014, 47, 7725-7731.	4.8	41
138	Recent advances in hydrogel-based anti-infective coatings. Journal of Materials Science and Technology, 2021, 85, 169-183.	10.7	40
139	Enhancement of Cationic Antimicrobial Materials via Cholesterol Incorporation. Advanced Healthcare Materials, 2014, 3, 882-889.	7.6	39
140	Chemically modifiable N-heterocycle-functionalized polycarbonates as a platform for diverse smart biomimetic nanomaterials. Chemical Science, 2014, 5, 3294-3300.	7.4	38
141	Organocatalytic Anticancer Drug Loading of Degradable Polymeric Mixed Micelles via a Biomimetic Mechanism. Macromolecules, 2016, 49, 2013-2021.	4.8	38
142	Degradable antimicrobial polycarbonates with unexpected activity and selectivity for treating multidrug-resistant Klebsiella pneumoniae lung infection in mice. Acta Biomaterialia, 2019, 94, 268-280.	8.3	38
143	Thermoresponsive Random Poly(ether urethanes) with Tailorable LCSTs for Anticancer Drug Delivery. Macromolecular Rapid Communications, 2015, 36, 1761-1767.	3.9	37
144	Non-Isocyanate Polyurethane Soft Nanoparticles Obtained by Surfactant-Assisted Interfacial Polymerization. Langmuir, 2017, 33, 1959-1968.	3. 5	36

#	Article	IF	Citations
145	Phenylboronic Acid Functionalized Polycarbonate Hydrogels for Controlled Release of Polymyxin B in <i>Pseudomonas Aeruginosa</i> Infected Burn Wounds. Advanced Healthcare Materials, 2018, 7, e1701388.	7.6	36
146	Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic Radical-Functionalized Diblock Copolymers. ACS Macro Letters, 2017, 6, 176-180.	4.8	35
147	Buckyball-Based Spherical Display of Crown Ethers for <i>De Novo</i> Custom Design of Ion Transport Selectivity. Journal of the American Chemical Society, 2020, 142, 21082-21090.	13.7	35
148	Delivery of a granzyme B inhibitor gene using carbamate-mannose modified PEI protects against cytotoxic lymphocyte killing. Biomaterials, 2013, 34, 3697-3705.	11.4	34
149	Broad Spectrum Macromolecular Antimicrobials with Biofilm Disruption Capability and In Vivo Efficacy. Advanced Healthcare Materials, 2017, 6, 1601420.	7.6	34
150	Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles. Molecular BioSystems, 2011, 7, 1512.	2.9	33
151	Mitigated Cytotoxicity and Tremendously Enhanced Gene Transfection Efficiency of PEI through Facile Oneâ€6tep Carbamate Modification. Advanced Healthcare Materials, 2013, 2, 1304-1308.	7.6	33
152	Upcycling Poly(ethylene terephthalate) Refuse to Advanced Therapeutics for the Treatment of Nosocomial and Mycobacterial Infections. Macromolecules, 2019, 52, 7878-7885.	4.8	33
153	Biodegradable Strain-Promoted Click Hydrogels for Encapsulation of Drug-Loaded Nanoparticles and Sustained Release of Therapeutics. Biomacromolecules, 2017, 18, 2277-2285.	5.4	32
154	Phase behavior study of paclitaxel loaded amphiphilic copolymer in two solvents by dissipative particle dynamics simulations. Chemical Physics Letters, 2009, 473, 336-342.	2.6	31
155	Nanomaterials in the Prevention, Diagnosis, and Treatment of <i>Mycobacterium Tuberculosis</i> Infections. Advanced Healthcare Materials, 2018, 7, 1700509.	7.6	31
156	Role of solvent in interactions between fatty acids-based formulations and lipids in porcine stratum corneum. Journal of Controlled Release, 2004, 94, 207-216.	9.9	30
157	Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells. Nanomedicine, 2015, 10, 143-160.	3.3	30
158	Peptideâ€Functionalized Polyurethane Coatings Prepared via Graftingâ€To Strategy to Selectively Promote Endothelialization. Advanced Healthcare Materials, 2018, 7, 1700944.	7.6	30
159	Disease-directed design of biodegradable polymers: Reactive oxygen species and pH-responsive micellar nanoparticles for anticancer drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2666-2677.	3.3	29
160	Galactoseâ€Functionalized Cationic Polycarbonate Diblock Copolymer for Targeted Gene Delivery to Hepatocytes. Macromolecular Rapid Communications, 2013, 34, 1714-1720.	3.9	28
161	Overcoming Multidrug Resistance in Microbials Using Nanostructures Selfâ€Assembled from Cationic Bentâ€Core Oligomers. Small, 2014, 10, 4130-4135.	10.0	28
162	Plasmonâ€Coupled Gold Nanospheres for Twoâ€Photon Imaging and Photoantibacterial Activity. Advanced Healthcare Materials, 2015, 4, 674-678.	7.6	28

#	Article	IF	CITATIONS
163	Developments in Dynamic Covalent Chemistries from the Reaction of Thiols with Hexahydrotriazines. Journal of the American Chemical Society, 2015, 137, 14248-14251.	13.7	28
164	Preparation of Biodegradable Cationic Polycarbonates and Hydrogels through the Direct Polymerization of Quaternized Cyclic Carbonates. ACS Biomaterials Science and Engineering, 2017, 3, 1567-1575.	5.2	28
165	Surface tethering of stem cells with H2O2-responsive anti-oxidizing colloidal particles for protection against oxidation-induced death. Biomaterials, 2019, 201, 1-15.	11.4	28
166	Fluorene-functionalized aliphatic polycarbonates: design, synthesis and aqueous self-assembly of amphiphilic block copolymers. Polymer Chemistry, 2014, 5, 2035-2040.	3.9	27
167	Effective encapsulation of apomorphine into biodegradable polymeric nanoparticles through a reversible chemical bond for delivery across the blood–brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 236-245.	3.3	27
168	Insights into EPR Effect versus Lectinâ€mediated Targeted Delivery: Biodegradable Polycarbonate Micellar Nanoparticles with and without Galactose Surface Decoration. Small, 2014, 10, 4281-4286.	10.0	26
169	Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection. Acta Biomaterialia, 2017, 54, 201-211.	8.3	26
170	Supramolecular nanofibers self-assembled from cationic small molecules derived from repurposed poly(ethylene teraphthalate) for antibiotic delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 165-172.	3.3	26
171	Functional cationic derivatives of starch as antimicrobial agents. Polymer Chemistry, 2019, 10, 412-423.	3.9	26
172	Tuning the Selectivity of Biodegradable Antimicrobial Cationic Polycarbonates by Exchanging the Counterâ€Anion. Macromolecular Bioscience, 2016, 16, 1360-1367.	4.1	25
173	Expanding the Cationic Polycarbonate Platform: Attachment of Sulfonium Moieties by Postpolymerization Ring Opening of Epoxides. ACS Macro Letters, 2016, 5, 1247-1252.	4.8	24
174	Facile routes to star polymers via an organocatalytic approach. Polymer Chemistry, 2011, 2, 2619.	3.9	23
175	Subcutaneous vaccination using injectable biodegradable hydrogels for long-term immune response. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102056.	3.3	23
176	Skin permeation of physostigmine from fatty acids-based formulations: evaluating the choice of solvent. International Journal of Pharmaceutics, 2005, 290, 25-36.	5.2	22
177	Effects of Hydrophobicity on Antimicrobial Activity, Selectivity, and Functional Mechanism of Guanidiniumâ€Functionalized Polymers. Advanced Healthcare Materials, 2022, 11, e2100482.	7.6	22
178	Broadâ€Spectrum Antiviral Peptides and Polymers. Advanced Healthcare Materials, 2021, 10, e2101113.	7.6	22
179	Enhancing the Biocompatibility and Biodegradability of Linear Poly(ethylene imine) through Controlled Oxidation. Macromolecules, 2015, 48, 7420-7427.	4.8	21
180	Short Synthetic αâ€Helicalâ€Forming Peptide Amphiphiles for Fungal Keratitis Treatment In Vivo. Advanced Healthcare Materials, 2017, 6, 1600777.	7.6	21

#	Article	IF	CITATIONS
181	Hydrogels with prolonged release of therapeutic antibody: Block junction chemistry modification of  ABA' copolymers provides superior anticancer efficacy. Journal of Controlled Release, 2019, 293, 193-200.	9.9	21
182	Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect. Biomaterials Science, 2020, 8, 6920-6929.	5.4	21
183	Modular composite hydrogels from cholesterol-functionalized polycarbonates for antimicrobial applications. Journal of Materials Chemistry B, 2015, 3, 6953-6963.	5.8	20
184	Cooperative Orthogonal Macromolecular Assemblies with Broad Spectrum Antiviral Activity, High Selectivity, and Resistance Mitigation. Macromolecules, 2016, 49, 2618-2629.	4.8	20
185	Surface Tethering of Inflammation-Modulatory Nanostimulators to Stem Cells for Ischemic Muscle Repair. ACS Nano, 2020, 14, 5298-5313.	14.6	20
186	Synthetic modifications of the immunomodulating peptide thymopentin to confer anti-mycobacterial activity. Biomaterials, 2014, 35, 3102-3109.	11.4	19
187	Biodegradable Block Copolyelectrolyte Hydrogels for Tunable Release of Therapeutics and Topical Antimicrobial Skin Treatment. ACS Macro Letters, 2015, 4, 886-891.	4.8	19
188	Coâ€Delivery of Antiviral and Antifungal Therapeutics for the Treatment of Sexually Transmitted Infections using a Moldable, Supramolecular Hydrogel. Advanced Healthcare Materials, 2015, 4, 385-394.	7.6	19
189	Fabrication and Characterization of Hybrid Stealth Liposomes. Macromolecules, 2018, 51, 3184-3192.	4.8	19
190	Delivery of NF-κB shRNA using carbamate-mannose modified PEI for eliminating cancer stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 405-414.	3.3	19
191	Polyurethane-coated silica particles with broad-spectrum antibacterial properties. Polymer Chemistry, 2015, 6, 2011-2022.	3.9	18
192	Diatom Microbubbler for Active Biofilm Removal in Confined Spaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35685-35692.	8.0	18
193	Identification of Structural Attributes Contributing to the Potency and Selectivity of Antimicrobial Polyionenes: Amides Are Better Than Esters. Biomacromolecules, 2019, 20, 2737-2742.	5.4	17
194	Interpenetrating Polymer Network Hydrogels Formed Using Antibiotics as a Dynamic Crosslinker for Treatment of Infected Wounds. Advanced Healthcare Materials, 2022, 11, .	7.6	17
195	Determination of betamethasone disodium phosphate in the in vitro media of PLGA microspheres by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28, 629-635.	2.8	16
196	Design and synthesis of biodegradable grafted cationic polycarbonates as broad spectrum antimicrobial agents. Journal of Polymer Science Part A, 2016, 54, 1029-1035.	2.3	16
197	Overcoming Barriers in Polycarbonate Synthesis: A Streamlined Approach for the Synthesis of Cyclic Carbonate Monomers. Macromolecules, 2021, 54, 1767-1774.	4.8	16
198	Fight bacteria with bacteria: Bacterial membrane vesicles as vaccines and delivery nanocarriers against bacterial infections. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 35, 102398.	3.3	16

#	Article	IF	CITATIONS
199	Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and Pharmacokinetics. Current Drug Metabolism, 2013, 14, 661-674.	1.2	15
200	Silane-functionalized polyionenes-coated cotton fabrics with potent antimicrobial and antiviral activities. Biomaterials, 2022, 284, 121470.	11.4	15
201	A novel chemosynthetic peptide with ß-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model. International Journal of Nanomedicine, 2015, 10, 1045.	6.7	14
202	Access to Different Nanostructures via Selfâ€Assembly of Thioureaâ€Containing PEGylated Amphiphiles. Macromolecular Rapid Communications, 2013, 34, 652-658.	3.9	13
203	Equilibrium Self-Assembly, Structure, and Dynamics of Clusters of Star-Like Micelles. ACS Macro Letters, 2015, 4, 1128-1133.	4.8	13
204	Biodegradable Cationic Polycarbonates as Vaccine Adjuvants. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52285-52297.	8.0	13
205	Codelivery of dual drugs from polymeric micelles for simultaneous targeting of both cancer cells and cancer stem cells. Nanomedicine, 2015, 10, 2819-2832.	3.3	12
206	Carboxylic acid-functionalized polycarbonates as bone cement additives for enhanced and sustained release of antibiotics. Journal of Controlled Release, 2021, 329, 871-881.	9.9	12
207	Selective Capture, Separation, and Photothermal Inactivation of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) Using Functional Magnetic Nanoparticles. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 20566-20575.	8.0	12
208	Antimicrobial silica particles synthesized via ring-opening grafting of cationic amphiphilic cyclic carbonates: effects of hydrophobicity and structure. Polymer Chemistry, 2016, 7, 2192-2201.	3.9	11
209	Simple and cost-effective polycondensation routes to antimicrobial consumer products. Polymer Chemistry, 2016, 7, 3923-3932.	3.9	11
210	Cholesterol functionalized aliphatic <i>N</i> -substituted 8-membered cyclic carbonate. Polymer Chemistry, 2018, 9, 2434-2437.	3.9	11
211	Cell membrane-engineered hybrid soft nanocomposites for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 5578-5596.	5.8	11
212	Complexes for Efficient Gene Transfection. Macromolecular Rapid Communications, 2010, 31, 1142-1147.	3.9	10
213	Self-Assembly and Dynamics Driven by Oligocarbonate–Fluorene End-Functionalized Poly(ethylene) Tj ETQq1 1	0.784314 4.8	rgBT /Overl
214	Convergent Approach to Boronic Acid Functionalized Polycarbonates: Accessing New Dynamic Material Platforms. ACS Macro Letters, 2017, 6, 252-256.	4.8	10
215	Co ₃ O ₄ Nanowires Capable of Discharging Low Voltage Electricity Showing Potent Antibacterial Activity for Treatment of Bacterial Skin Infection. Advanced Healthcare Materials, 2022, 11, e2102044.	7.6	10
216	Facile carbohydrate-mimetic modifications of poly(ethylene imine) carriers for gene delivery applications. Polymer Chemistry, 2016, 7, 5862-5872.	3.9	9

#	Article	IF	CITATIONS
217	Enthalpy-driven micellization of oligocarbonate-fluorene end-functionalized Poly(ethylene glycol). Polymer, 2018, 134, 94-103.	3.8	9
218	Design of physostigmine-loaded polymeric microparticles for pretreatment against exposure to organophosphate agents. Biomaterials, 2003, 24, 1271-1277.	11.4	8
219	Iron-based nano-structured surfaces with antimicrobial properties. Journal of Materials Chemistry B, 2020, 8, 10146-10153.	5.8	8
220	Simple liquid chromatographic method for the determination of physostigmine and its metabolite eseroline in rat plasma: application to a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 784, 323-329.	2.3	7
221	Pore Diameter of Mesoporous Silica Modulates Oxidation of H ₂ O ₂ -Sensing Chromophore in a Porous Matrix. Langmuir, 2018, 34, 11242-11252.	3.5	6
222	Potent Antiviral and Antimicrobial Polymers as Safe and Effective Disinfectants for the Prevention of Infections. Advanced Healthcare Materials, 2022, 11, e2101898.	7.6	6
223	Antimicrobial Polypeptides Capable of Membrane Translocation for Treatment of MRSA Wound Infection In Vivo. Advanced Healthcare Materials, 2022, 11, e2101770.	7.6	6
224	Drug-free neutrally charged polypeptide nanoparticles as anticancer agents. Journal of Controlled Release, 2022, 345, 464-474.	9.9	6
225	Repurposing Non-Antibiotic Drugs Auranofin and Pentamidine in Combination to Combat Multidrug-Resistant Gram-Negative Bacteria. International Journal of Antimicrobial Agents, 2022, 59, 106582.	2.5	5
226	Starâ€Like Structure of Oligocarbonateâ€Fluorene Endâ€Functionalized Poly(ethylene glycol) ABA Triblock Copolymers Below the Gel Point. Macromolecular Symposia, 2015, 358, 157-169.	0.7	4
227	Branched \hat{l}_{\pm} -helical peptides enhanced antitumor efficacy and selectivity. Biomaterials Science, 2020, 8, 6387-6394.	5.4	4
228	The effect of solvent quality on pathway-dependent solution-state self-assembly of an amphiphilic diblock copolymer. Journal of Applied Physics, 2020, 127, 125104.	2.5	4
229	Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102492.	3.3	4
230	Surface Antimicrobial Treatment by Biocompatible, Vertically Aligned Layered Double Hydroxide Array. Advanced Materials Interfaces, 2022, 9, .	3.7	4
231	Emergence of multidrug-resistant bacteria: important role of macromolecules and drug delivery systems. Advanced Drug Delivery Reviews, 2014, 78, 1-2.	13.7	3
232	Elucidating the anticancer activities of guanidinium-functionalized amphiphilic random copolymers by varying the structure and composition in the hydrophobic monomer. Theranostics, 2021, 11, 8977-8992.	10.0	3
233	Exploring Reusability of Disposable Face Masks: Effects of Disinfection Methods on Filtration Efficiency, Breathability, and Fluid Resistance. Global Challenges, 2021, 5, 2100030.	3.6	3
234	Cationic polymer synergizing with chemotherapeutics and re-purposing antibiotics against cancer cells. Biomaterials Science, 2021, 9, 2174-2182.	5.4	3

#	Article	IF	CITATIONS
235	Surface tethering of stromal cell-derived factor-lî± carriers to stem cells enhances cell homing to ischemic muscle. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102215.	3.3	2
236	CATIONIC BOLAAMPHIPHILES FOR GENE DELIVERY. Cosmos, 2014, 10, 25-38.	0.4	1
237	Optimization of a Novel Preferential Covered Stent through Bench Experiments and in Vitro Platelet Activation Studies. ACS Biomaterials Science and Engineering, 2019, 5, 6216-6230.	5.2	1
238	Celebration of a chemical centenary. Nature Chemistry, 2019, 11, 870-871.	13.6	0
239	Sensitization of Cancer Cells via Non-Viral Delivery of Apoptosis Inducing Proteins Using a Cationic Bolaamphiphile. Biotechnology Journal, 2019, 14, 1800020.	3.5	0
240	The effect of solvent quality on pathway-dependent solution-state self-assembly of an amphiphilic diblock copolymer. Journal of Applied Physics, 2020, 127, 1251041-1251048.	2. 5	0
241	Enthalpy-driven micellization of oligocarbonate-fluorene end-functionalized Poly(ethylene glycol). Macromolecules, 2018, 134, .	4.8	0