
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291484/publications.pdf Version: 2024-02-01

RODIS DELIN

#	Article	IF	CITATIONS
1	An insight into the cytotoxic activity of phytol at <i>in vitro</i> conditions. Natural Product Research, 2014, 28, 2053-2056.	1.8	102
2	<i>In vitro</i> anti-quorum sensing activity of phytol. Natural Product Research, 2015, 29, 374-377.	1.8	98
3	Synthesis and Biological Activities of Thio-avarol Derivatives. Journal of Natural Products, 2008, 71, 1850-1853.	3.0	77
4	Satureja horvatii essential oil: In vitro antimicrobial and antiradical properties and in situ control of Listeria monocytogenes in pork meat. Meat Science, 2014, 96, 1355-1360.	5.5	69
5	Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Industrial Crops and Products, 2013, 49, 561-567.	5.2	67
6	New and Highly Potent Antitumor Natural Products from Marine-Derived Fungi: Covering the Period from 2003 to 2012. Current Topics in Medicinal Chemistry, 2013, 13, 2745-2766.	2.1	67
7	The lignicolous fungus <i>Trametes versicolor</i> (L.) Lloyd (1920): a promising natural source of antiradical and AChE inhibitory agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 355-362.	5.2	57
8	Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chemistry, 2017, 218, 440-446.	8.2	52
9	Quercetin Potently Reduces Biofilm Formation of the Strain Pseudomonas aeruginosa PAO1 in vitro. Current Pharmaceutical Biotechnology, 2015, 16, 733-737.	1.6	47
10	Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease. European Journal of Medicinal Chemistry, 2016, 122, 326-338.	5.5	43
11	A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. Journal of Food Science and Technology, 2017, 54, 430-438.	2.8	40
12	The polysaccharide extracts from the fungi <i>Coprinus comatus</i> and <i>Coprinellus truncorum</i> do exhibit AChE inhibitory activity. Natural Product Research, 2019, 33, 750-754.	1.8	38
13	Preliminary Data on Essential Oil Composition of the Moss <i>Rhodobryum ontariense</i> (Kindb.) Kindb Cryptogamie, Bryologie, 2011, 32, 113-117.	0.2	37
14	Further <i>in vitro</i> evaluation of cytotoxicity of the marine natural product derivative 4′-leucine-avarone. Natural Product Research, 2014, 28, 347-350.	1.8	36
15	Anti-quorum sensing activity of selected sponge extracts: a case study of <i>Pseudomonas aeruginosa</i> . Natural Product Research, 2014, 28, 2330-2333.	1.8	34
16	Sugar composition of the moss <i>Rhodobryum ontariense</i> (Kindb.) Kindb Natural Product Research, 2012, 26, 209-215.	1.8	32
17	Potential antioxidant activity of the moss <i>Bryum moravicum</i> . Natural Product Research, 2013, 27, 900-902.	1.8	32
18	lmpact of vinification procedure on fruit wine inhibitory activity against α-glucosidase. Food Bioscience, 2018, 25, 1-7.	4.4	31

#	Article	IF	CITATIONS
19	Stictic acid inhibits cell growth of human colon adenocarcinoma HT-29 cells. Arabian Journal of Chemistry, 2017, 10, S1240-S1242.	4.9	30
20	An insight into anti-biofilm and anti-quorum sensing activities of the selected anthocyanidins: the case study of <i>Pseudomonas aeruginosa</i> PAO1. Natural Product Research, 2017, 31, 1177-1180.	1.8	28
21	Antioxidant Activity of Selected Polyphenolics in Yeast Cells: The Case Study of Montenegrin Merlot Wine. Molecules, 2018, 23, 1971.	3.8	28
22	Further in vitro Evaluation of Antimicrobial Activity of the Marine Sesquiterpene Hydroquinone Avarol. Current Pharmaceutical Biotechnology, 2014, 15, 583-588.	1.6	27
23	Fruit as a substrate for a wine: A case study of selected berry and drupe fruit wines. Scientia Horticulturae, 2019, 244, 42-49.	3.6	26
24	Phenolic natural products of the wines obtained from three new Merlot clone candidates. Natural Product Research, 2016, 30, 987-990.	1.8	25
25	Heavy metal content of a medicinal moss tea for hypertension. Natural Product Research, 2012, 26, 2239-2242.	1.8	24
26	A computational insight into acetylcholinesterase inhibitory activity of a new lichen depsidone. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 528-532.	5.2	23
27	Fruit Wines Inhibitory Activity Against α-Glucosidase. Current Pharmaceutical Biotechnology, 2018, 18, 1264-1272.	1.6	23
28	<i>Trametes versicolor</i> ethanol extract, a promising candidate for health–promoting food supplement. Natural Product Research, 2018, 32, 963-967.	1.8	22
29	Polarography as a technique of choice for the evaluation of total antioxidant activity: The case study of selected <i>Coprinus Comatus</i> extracts and quinic acid, their antidiabetic ingredient. Natural Product Research, 2021, 35, 1711-1716.	1.8	21
30	A new depsidone of <i>Lobaria pulmonaria</i> with acetylcholinesterase inhibition activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 876-878.	5.2	19
31	Lignicolous fungi hydrodistilled extracts may represent a promising source of natural phenolics. Natural Product Research, 2017, 31, 104-107.	1.8	16
32	Some chemical characteristics and antioxidant capacity of novel Merlot wine clones developed in Montenegro. Scientia Horticulturae, 2017, 225, 505-511.	3.6	15
33	The moss Mnium hornum, a promising source of arachidonic acid. Chemistry of Natural Compounds, 2012, 48, 120-121.	0.8	14
34	The natural product content of the selected Cabernet Franc wine samples originating from Serbia: a case study of phenolics. Natural Product Research, 2016, 30, 1762-1765.	1.8	14
35	Viticultural and chemical characteristics of Muscat Hamburg preselected clones grown for table grapes. Journal of the Science of Food and Agriculture, 2017, 97, 587-594.	3.5	14
36	<i>In vitro</i> antiâ€hydroxyl radical activity of the fructooligosaccharides 1â€kestose and nystose using spectroscopic and computational approaches. International Journal of Food Science and Technology, 2014, 49, 1500-1505.	2.7	13

#	Article	IF	CITATIONS
37	Fatty Acids Predominantly Affect Anti-Hydroxyl Radical Activity and FRAP Value: The Case Study of Two Edible Mushrooms. Antioxidants, 2019, 8, 480.	5.1	13
38	Further Study on Fructooligosaccharides of <i>Rhodobryum ontariense</i> . Cryptogamie, Bryologie, 2012, 33, 191-196.	0.2	12
39	A brief review of potent anti-CNS tumourics from marine sponges: covering the period from 1994 to 2014. Natural Product Research, 2018, 32, 375-384.	1.8	12
40	Anti-hydroxyl radical activity, redox potential and anti-AChE activity of <i>Amanita strobiliformis</i> polysaccharide extract. Natural Product Research, 2019, 33, 1522-1526.	1.8	12
41	Wine Chemical Composition and Radical Scavenging Activity of Some Cabernet Franc Clones. Current Pharmaceutical Biotechnology, 2017, 18, 343-350.	1.6	12
42	New Antitumour Natural Products from Marine Red Algae: Covering the Period from 2003 to 2012. Mini-Reviews in Medicinal Chemistry, 2015, 15, 720-730.	2.4	12
43	Abts cation scavenging activity and total phenolic content of three moss species. Hemijska Industrija, 2012, 66, 723-726.	0.7	12
44	Further <i>in vitro</i> biological activity evaluation of amino-, thio- and ester-derivatives of avarol. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 333-335.	5.2	11
45	<i>In vitro</i> antibiofilm activity of the freshwater bryozoan <i>Hyalinella punctata</i> : a case study of <i>Pseudomonas aeruginosa</i> PAO1. Natural Product Research, 2016, 30, 1847-1850.	1.8	11
46	<i>In vitro</i> evaluation of cytotoxic and mutagenic activity of avarol. Natural Product Research, 2016, 30, 1293-1296.	1.8	11
47	<i>Coprinus comatus</i> filtrate extract, a novel neuroprotective agent of natural origin. Natural Product Research, 2020, 34, 2346-2350.	1.8	11
48	Liposomal integration method for assessing antioxidative activity of water insoluble compounds towards biologically relevant free radicals: example of avarol. Journal of Liposome Research, 2020, 30, 218-226.	3.3	11
49	Fatty acid chemistry of Atrichum undulatum and Hypnum andoi. Hemijska Industrija, 2012, 66, 207-209.	0.7	11
50	<i>In vitro</i> evaluation of antimicrobial activity of the freshwater sponge <i>Ochridaspongia rotunda</i> (Arndt, 1937). Natural Product Research, 2014, 28, 1489-1494.	1.8	10
51	Comparative analytical study of the selected wine varieties grown in Montenegro. Natural Product Research, 2017, 31, 1825-1830.	1.8	10
52	An insight into chemical composition and biological activity of Montenegrin Vranac red wine. Scientia Horticulturae, 2018, 230, 142-148.	3.6	10
53	Novel and highly potent antitumour natural products from cnidarians of marine origin. Natural Product Research, 2014, 28, 2237-2244.	1.8	9
54	Identification and first insights into the structure of chitin from the endemic freshwater demosponge Ochridaspongia rotunda (Arndt, 1937). International Journal of Biological Macromolecules, 2020, 162, 1187-1194.	7.5	9

#	Article	IF	CITATIONS
55	Further insight into the bioactivity of the freshwater sponge <i>Ochridaspongia rotunda</i> . Pharmaceutical Biology, 2017, 55, 1313-1316.	2.9	8
56	Impact of clonal selection on Cabernet Franc Grape and wine elemental profiles. Scientia Horticulturae, 2018, 237, 74-80.	3.6	8
57	The redox couple avarol/avarone in the fight with malignant gliomas: the case study of U-251 MG cells. Natural Product Research, 2018, 32, 616-620.	1.8	8
58	New cytotoxic natural products from the mangrove biome: covering the period 2007–2015. Natural Product Research, 2019, 33, 1624-1628.	1.8	8
59	Preliminary analysis of fatty acid chemistry of Kindbergia praelonga and Kindbergia stokesii (Brachytheciaceae). Journal of the Serbian Chemical Society, 2010, 75, 1637-1640.	0.8	7
60	In vitro avarol does affect the growth of Candida sp Natural Product Research, 2016, 30, 1956-1960.	1.8	7
61	A contribution to pharmaceutical biology of freshwater sponges. Natural Product Research, 2018, 32, 568-571.	1.8	7
62	An insight into chemical composition and bioactivity of 'Prokupac' red wine. Natural Product Research, 2020, 34, 1542-1546.	1.8	7
63	Acetylcholinesterase inhibition activity of acetylated depsidones from <i>Lobaria pulmonaria</i> . Natural Product Research, 2012, 26, 1634-1637.	1.8	6
64	Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro. Natural Product Research, 2018, 32, 247-251.	1.8	6
65	Raspberry seeds extract selectively inhibits the growth of human lung cancer cells <i>in vitro</i> . Natural Product Research, 2021, 35, 2253-2256.	1.8	6
66	Antimicrobial activity of Rhodobryum ontariense. Hemijska Industrija, 2012, 66, 381-384.	0.7	6
67	An insight into antimicrobial activity of the freshwater bryozoan <i>Pectinatella magnifica</i> . Natural Product Research, 2016, 30, 1839-1843.	1.8	5
68	A contribution to the estimation of berry fruits quality. Scientia Horticulturae, 2019, 258, 108776.	3.6	5
69	A contribution to the elemental profile of the leaf samples of newly developed Cabernet Franc varieties. Natural Product Research, 2019, 33, 1209-1213.	1.8	5
70	Flavonoids from the aerial parts of Onobrychis montana subsp. scardica. Journal of the Serbian Chemical Society, 2008, 73, 525-529.	0.8	4
71	Low sugar jellies of berry fruits: the impact of low vs. high temperature regime on their chemical composition and antioxidativity. Natural Product Research, 2021, 35, 337-341.	1.8	4
72	Sedative and Anxiolytic-Like Activities of the MossRhodobryum ontarienseWater Extract in Rodents: A Preliminary Study. Cryptogamie, Bryologie, 2013, 34, 49-54.	0.2	3

#	Article	IF	CITATIONS
73	In vitro Radioprotective Activity of the Bryozoan Hyalinella punctata. Asian Journal of Chemistry, 2013, 25, 4713-4714.	0.3	3
74	A bryozoan species may offer novel antioxidants with anti-carbon-dioxide anion radical activity. Natural Product Research, 2014, 28, 2057-2060.	1.8	3
75	Antioxidant volatiles of the freshwater bryozoanHyalinella punctata. Natural Product Research, 2014, 28, 1471-1475.	1.8	3
76	A novel and effective natural product-based immunodetection tool for TNT-like compounds. Natural Product Research, 2022, 36, 857-861.	1.8	3
77	Antitumor Natural Products of Marine-Derived Fungi. Reference Series in Phytochemistry, 2017, , 1-28.	0.4	3
78	Furtherin vitroEvaluation of Antiradical Activity of the MossRhodobryum ontarienseTea Using EPR and Fluorescence Spectroscopy. Cryptogamie, Bryologie, 2014, 35, 173-179.	0.2	2
79	Low-Energy Strawberry Fruits of Joly Cultivar, the First Step Towards a Novel, Food-Based Solution for the Obese Population. Applied Sciences (Switzerland), 2019, 9, 5140.	2.5	2
80	A neglected natural source for targeting glioblastoma. Natural Product Research, 2021, 35, 1856-1860.	1.8	2
81	Electrochemical and spectroscopic study of l-dopa interaction with avarol. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 219-229.	1.7	1
82	3.5-scFv-β-lactamase, a new protein detector of picric acid, the highly nitrated organic explosive. Natural Product Research, 2022, 36, 1317-1320.	1.8	0