Charles C Mullighan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 2007, 446, 758-764.	27.8	1,602
2	Acute Lymphoblastic Leukemia in Children. New England Journal of Medicine, 2015, 373, 1541-1552.	27.0	1,484
3	The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 2012, 481, 157-163.	27.8	1,430
4	Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 2012, 44, 251-253.	21.4	1,402
5	Deletion of <i>IKZF1</i> and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2009, 360, 470-480.	27.0	1,260
6	Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2014, 371, 1005-1015.	27.0	1,161
7	BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature, 2008, 453, 110-114.	27.8	955
8	Acute lymphoblastic leukaemia. Lancet, The, 2013, 381, 1943-1955.	13.7	879
9	Analysis of the coding genome of diffuse large B-cell lymphoma. Nature Genetics, 2011, 43, 830-837.	21.4	871
10	Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncology, The, 2009, 10, 147-156.	10.7	850
11	Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature, 2011, 471, 189-195.	27.8	822
12	International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, 2022, 140, 1200-1228.	1.4	814
13	Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. Journal of Clinical Oncology, 2015, 33, 2938-2948.	1.6	747
14	Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 2009, 41, 843-848.	21.4	742
15	Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia. Science, 2008, 322, 1377-1380.	12.6	735
16	Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nature Genetics, 2013, 45, 602-612.	21.4	704
17	The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nature Genetics, 2017, 49, 1211-1218.	21.4	693
18	Variable Clonal Repopulation Dynamics Influence Chemotherapy Response in Colorectal Cancer. Science, 2013, 339, 543-548.	12.6	691

#	Article	IF	CITATIONS
19	Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 153-166.	16.8	621
20	The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 242-252.	21.4	588
21	Analysis of the chronic lymphocytic leukemia coding genome: role of <i>NOTCH1</i> mutational activation. Journal of Experimental Medicine, 2011, 208, 1389-1401.	8.5	565
22	Rearrangement of CRLF2 in B-progenitor– and Down syndrome–associated acute lymphoblastic leukemia. Nature Genetics, 2009, 41, 1243-1246.	21.4	559
23	CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature, 2011, 471, 235-239.	27.8	542
24	JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9414-9418.	7.1	516
25	Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood, 2010, 115, 5312-5321.	1.4	503
26	CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nature Methods, 2011, 8, 652-654.	19.0	451
27	A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature, 2012, 481, 329-334.	27.8	442
28	Pediatric acute lymphoblastic leukemia: where are we going and how do we get there?. Blood, 2012, 120, 1165-1174.	1.4	439
29	Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature, 2011, 469, 362-367.	27.8	421
30	The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nature Genetics, 2015, 47, 330-337.	21.4	405
31	PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nature Genetics, 2019, 51, 296-307.	21.4	384
32	Genetic Basis of Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2017, 35, 975-983.	1.6	378
33	Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood, 2010, 116, 4874-4884.	1.4	370
34	Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome. Clinical Cancer Research, 2017, 23, e38-e45.	7.0	358
35	The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nature Communications, 2014, 5, 3630.	12.8	342
36	Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature, 2014, 514, 513-517.	27.8	340

#	Article	IF	CITATIONS
37	High Frequency and Poor Outcome of Philadelphia Chromosome–Like Acute Lymphoblastic Leukemia in Adults. Journal of Clinical Oncology, 2017, 35, 394-401.	1.6	326
38	Pediatric acute lymphoblastic leukemia. Haematologica, 2020, 105, 2524-2539.	3.5	313
39	A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood, 2019, 133, 1548-1559.	1.4	292
40	Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood, 2017, 129, 572-581.	1.4	285
41	Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nature Communications, 2015, 6, 6604.	12.8	281
42	A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 1226-1231.	21.4	270
43	Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nature Genetics, 2013, 45, 1494-1498.	21.4	264
44	Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120, 3510-3518.	1.4	263
45	The Notch/Hes1 Pathway Sustains NF-κB Activation through CYLD Repression in T Cell Leukemia. Cancer Cell, 2010, 18, 268-281.	16.8	261
46	Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood, 2009, 114, 1859-1863.	1.4	260
47	Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood, 2011, 118, 3080-3087.	1.4	255
48	Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. Journal of Experimental Medicine, 2013, 210, 2273-2288.	8.5	255
49	A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nature Genetics, 2017, 49, 1487-1494.	21.4	255
50	Recurrent DGCR8, DROSHA, and SIX Homeodomain Mutations in Favorable Histology Wilms Tumors. Cancer Cell, 2015, 27, 286-297.	16.8	244
51	Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood, 2016, 127, 3004-3014.	1.4	244
52	Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nature Reviews Clinical Oncology, 2015, 12, 344-357.	27.6	243
53	Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 1386-1391.	21.4	238
54	Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood, 2017, 129, 3352-3361.	1.4	236

#	Article	IF	CITATIONS
55	The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018, 562, 373-379.	27.8	236
56	Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood, 2015, 125, 3977-3987.	1.4	232
57	Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nature Genetics, 2016, 48, 1481-1489.	21.4	231
58	Vitamin D receptor gene polymorphism: association with Crohn's disease susceptibility. Gut, 2000, 47, 211-214.	12.1	225
59	Outcomes of Children With <i>BCR-ABL1</i> –Like Acute Lymphoblastic Leukemia Treated With Risk-Directed Therapy Based on the Levels of Minimal Residual Disease. Journal of Clinical Oncology, 2014, 32, 3012-3020.	1.6	223
60	Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nature Communications, 2016, 7, 13331.	12.8	218
61	The genomic landscape of core-binding factor acute myeloid leukemias. Nature Genetics, 2016, 48, 1551-1556.	21.4	215
62	Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group Study. Blood, 2012, 119, 3512-3522.	1.4	210
63	Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations. Journal of the National Cancer Institute, 2013, 105, 733-742.	6.3	208
64	Tyrosine Kinase Inhibitor Therapy Induces Remission in a Patient With Refractory <i>EBF1-PDGFRB</i> –Positive Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2013, 31, e413-e416.	1.6	202
65	Molecular genetics of B-precursor acute lymphoblastic leukemia. Journal of Clinical Investigation, 2012, 122, 3407-3415.	8.2	202
66	Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood, 2012, 120, 833-842.	1.4	201
67	Mannose-binding lectin gene polymorphisms are associated with major infection following allogeneic hemopoietic stem cell transplantation. Blood, 2002, 99, 3524-3529.	1.4	192
68	Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood, 2010, 115, 1394-1405.	1.4	192
69	Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood, 2014, 123, 70-77.	1.4	189
70	Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood, 2015, 125, 1759-1767.	1.4	189
71	Dasatinib Plus Intensive Chemotherapy in Children, Adolescents, and Young Adults With Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: Results of Children's Oncology Group Trial AALL0622. Journal of Clinical Oncology, 2018, 36, 2306-2314.	1.6	185
72	Analysis of the Relationship Between Mannoseâ€Binding Lectin (MBL) Genotype, MBL Levels and Function in an Australian Blood Donor Population. Scandinavian Journal of Immunology, 2002, 56, 630-641.	2.7	174

#	Article	IF	CITATIONS
73	The TCF-1 and LEF-1 Transcription Factors Have Cooperative and Opposing Roles in T Cell Development and Malignancy. Immunity, 2012, 37, 813-826.	14.3	173
74	Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proceedings of the United States of America, 2009, 106, 12944-12949.	7.1	172
75	Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood, 2019, 133, 1313-1324.	1.4	172
76	Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16. Journal of Clinical Oncology, 2019, 37, 3377-3391.	1.6	169
77	The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood, 2011, 118, 4169-4173.	1.4	162
78	Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncology, The, 2015, 16, 1659-1666.	10.7	161
79	The molecular genetic makeup of acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program, 2012, 2012, 389-396.	2.5	156
80	Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood, 2013, 121, 485-488.	1.4	156
81	Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia, 2007, 21, 2000-2009.	7.2	154
82	Interleukins-1, -4, -6, -10, tumor necrosis factor, transforming growth factor-β, FAS, and mannose-binding protein C gene polymorphisms in Australian women: Risk of preterm birth. American Journal of Obstetrics and Gynecology, 2004, 191, 2056-2067.	1.3	153
83	Mannoseâ€binding lectin: biology and clinical implications. Internal Medicine Journal, 2005, 35, 548-555.	0.8	147
84	Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 343-356.	16.8	145
85	Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene, 2014, 33, 2169-2178.	5.9	144
86	The genomic landscape of pediatric myelodysplastic syndromes. Nature Communications, 2017, 8, 1557.	12.8	143
87	Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell, 2018, 33, 937-948.e8.	16.8	142
88	Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia, 2009, 23, 1209-1218.	7.2	141
89	Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discovery, 2021, 11, 1440-1453.	9.4	137
90	Adults with Philadelphia chromosome–like acute lymphoblastic leukemia frequently have <i>IGH-CRLF2</i> and <i>JAK2</i> mutations, persistence of minimal residual disease and poor prognosis. Haematologica, 2017, 102, 130-138.	3.5	136

#	Article	IF	CITATIONS
91	Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nature Medicine, 2011, 17, 1298-1303.	30.7	133
92	Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood, 2010, 115, 4657-4663.	1.4	132
93	Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia. PLoS Genetics, 2015, 11, e1005262.	3.5	128
94	NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nature Genetics, 2015, 47, 607-614.	21.4	126
95	Cyclin C is a haploinsufficient tumour suppressor. Nature Cell Biology, 2014, 16, 1080-1091.	10.3	124
96	<i>TP53</i> Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children. Journal of Clinical Oncology, 2018, 36, 591-599.	1.6	121
97	TNF and lymphotoxin-alpha polymorphisms associated with common variable immunodeficiency: role in the pathogenesis of granulomatous disease. Journal of Immunology, 1997, 159, 6236-41.	0.8	121
98	Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 186-200.	16.8	118
99	Combined Targeting of JAK2 and Bcl-2/Bcl-xL to Cure Mutant JAK2-Driven Malignancies and Overcome Acquired Resistance to JAK2 Inhibitors. Cell Reports, 2013, 5, 1047-1059.	6.4	116
100	Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. Journal of Clinical Investigation, 2013, 123, 3099-3111.	8.2	115
101	A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood, 2015, 125, 680-686.	1.4	110
102	St. Jude Cloud: A Pediatric Cancer Genomic Data-Sharing Ecosystem. Cancer Discovery, 2021, 11, 1082-1099.	9.4	109
103	Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2020, 37, 867-882.e12.	16.8	108
104	Mannose Binding Lectin Polymorphisms are Associated With Early Age of Disease Onset and Autoimmunity in Common Variable Immunodeficiency. Scandinavian Journal of Immunology, 2000, 51, 111-122.	2.7	104
105	RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget, 2014, 5, 438-450.	1.8	104
106	Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood, 2018, 132, 815-824.	1.4	97
107	Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nature Genetics, 2019, 51, 694-704.	21.4	97
108	Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. Journal of Experimental Medicine, 2014, 211, 701-713.	8.5	96

#	Article	IF	CITATIONS
109	Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia, 2019, 33, 457-468.	7.2	96
110	Absence of Biallelic <i>TCR</i> γ Deletion Predicts Early Treatment Failure in Pediatric T-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2010, 28, 3816-3823.	1.6	93
111	Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 96-111.	5.0	93
112	Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nature Reviews Cancer, 2021, 21, 122-137.	28.4	91
113	Human Gastrointestinal Neoplasia-Associated Myofibroblasts Can Develop from Bone Marrow-Derived Cells Following Allogeneic Stem Cell Transplantation. Stem Cells, 2009, 27, 1463-1468.	3.2	90
114	Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia. Nature, 2018, 553, 511-514.	27.8	90
115	Genomes for Kids: The Scope of Pathogenic Mutations in Pediatric Cancer Revealed by Comprehensive DNA and RNA Sequencing. Cancer Discovery, 2021, 11, 3008-3027.	9.4	88
116	The molecular genetic makeup of acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program, 2012, 2012, 389-96.	2.5	88
117	Emergence of Polyclonal FLT3 Tyrosine Kinase Domain Mutations during Sequential Therapy with Sorafenib and Sunitinib in FLT3-ITD–Positive Acute Myeloid Leukemia. Clinical Cancer Research, 2013, 19, 5758-5768.	7.0	87
118	Genomic Characterization of Childhood Acute Lymphoblastic Leukemia. Seminars in Hematology, 2013, 50, 314-324.	3.4	85
119	Failure of <i>CDKN2A/B</i> (<i>INK4A/B–ARF</i>)-mediated tumor suppression and resistance to targeted therapy in acute lymphoblastic leukemia induced by BCR-ABL. Genes and Development, 2008, 22, 1411-1415.	5.9	84
120	Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors. Haematologica, 2014, 99, 94-102.	3.5	84
121	Philadelphia Chromosome–like Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 464-470.	0.4	84
122	Replicative potential of human natural killer cells. British Journal of Haematology, 2009, 145, 606-613.	2.5	83
123	Enhancer Hijacking Drives Oncogenic <i>BCL11B</i> Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discovery, 2021, 11, 2846-2867.	9.4	83
124	Favorable Outcomes for Older Adolescents and Young Adults (AYA) with Acute Lymphoblastic Leukemia (ALL): Early Results of U.S. Intergroup Trial C10403. Blood, 2014, 124, 796-796.	1.4	83
125	Adhesion molecule polymorphisms in chronic renal allograft failure. Kidney International, 1999, 55, 1977-1982.	5.2	82
126	Significance of <i>TP53</i> Mutation in Wilms Tumors with Diffuse Anaplasia: A Report from the Children's Oncology Group. Clinical Cancer Research, 2016, 22, 5582-5591.	7.0	82

#	Article	IF	CITATIONS
127	Genome-wide single-nucleotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant RAS or PTPN11. Oncogene, 2007, 26, 5816-5821.	5.9	80
128	IDH1 and IDH2 mutations in pediatric acute leukemia. Leukemia, 2011, 25, 1570-1577.	7.2	80
129	The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematology American Society of Hematology Education Program, 2014, 2014, 174-180.	2.5	79
130	Non-HLA immunogenetic polymorphisms and the risk of complications after allogeneic hemopoietic stem-cell transplantation. Transplantation, 2004, 77, 587-596.	1.0	76
131	Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood, 2015, 126, 2896-2899.	1.4	76
132	Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Advances, 2017, 1, 1657-1671.	5.2	76
133	Tissue Plasminogen Activator â^'7351C/T Enhancer Polymorphism Is a Risk Factor for Lacunar Stroke. Stroke, 2004, 35, 1090-1094.	2.0	74
134	Cell of origin strongly influences genetic selection in a mouse model of T-ALL. Blood, 2011, 118, 4646-4656.	1.4	74
135	CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data. Genome Biology, 2020, 21, 126.	8.8	74
136	Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia. Genes and Development, 2014, 28, 1337-1350.	5.9	73
137	Donor Mannoseâ€Binding Lectin Deficiency Increases the Likelihood of Clinically Significant Infection after Liver Transplantation. Clinical Infectious Diseases, 2009, 48, 410-417.	5.8	72
138	PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood, 2015, 125, 3609-3617.	1.4	72
139	Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nature Communications, 2015, 6, 7553.	12.8	72
140	Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discovery, 2020, 10, 568-587.	9.4	72
141	Clobal Genomic Characterization of Acute Lymphoblastic Leukemia. Seminars in Hematology, 2009, 46, 3-15.	3.4	71
142	Modeling the evolution of ETV6-RUNX1–induced B-cell precursor acute lymphoblastic leukemia in mice. Blood, 2011, 118, 1041-1051.	1.4	71
143	Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCI Insight, 2018, 3, .	5.0	71
144	Clinical Significance of Novel Subtypes of Acute Lymphoblastic Leukemia in the Context of Minimal Residual Disease–Directed Therapy. Blood Cancer Discovery, 2021, 2, 326-337.	5.0	71

#	Article	IF	CITATIONS
145	Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood, 2021, 137, 471-484.	1.4	70
146	Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.	13.2	70
147	Variation in immunoregulatory genes determines the clinical phenotype of common variable immunodeficiency. Genes and Immunity, 1999, 1, 137-148.	4.1	68
148	CONSERTING: integrating copy-number analysis with structural-variation detection. Nature Methods, 2015, 12, 527-530.	19.0	68
149	Phase Separation Mediates NUP98 Fusion Oncoprotein Leukemic Transformation. Cancer Discovery, 2022, 12, 1152-1169.	9.4	68
150	Characterization of leukemias with ETV6-ABL1 fusion. Haematologica, 2016, 101, 1082-1093.	3.5	66
151	Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8 ⁺ T cell responses. Science Translational Medicine, 2019, 11, .	12.4	66
152	Development and Validation Of a Highly Sensitive and Specific Gene Expression Classifier To Prospectively Screen and Identify B-Precursor Acute Lymphoblastic Leukemia (ALL) Patients With a Philadelphia Chromosome-Like ("Ph-like―or "BCR-ABL1-Likeâ€) Signature For Therapeutic Targeting and Clinical Intervention. Blood, 2013, 122, 826-826.	1.4	65
153	Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood, 2015, 126, 69-75.	1.4	64
154	MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours. Nature Communications, 2015, 6, 10013.	12.8	64
155	Integration of Next-Generation Sequencing to Treat Acute Lymphoblastic Leukemia with Targetable Lesions: The St. Jude Children's Research Hospital Approach. Frontiers in Pediatrics, 2017, 5, 258.	1.9	62
156	TET2 mutations in myelodysplasia and myeloid malignancies. Nature Genetics, 2009, 41, 766-767.	21.4	60
157	Improving outcomes for highâ€risk ALL: Translating new discoveries into clinical care. Pediatric Blood and Cancer, 2011, 56, 984-993.	1.5	60
158	Genome sequencing of lymphoid malignancies. Blood, 2013, 122, 3899-3907.	1.4	60
159	Molecular classification improves risk assessment in adult <i>BCR-ABL1–</i> negative B-ALL. Blood, 2021, 138, 948-958.	1.4	59
160	Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nature Communications, 2019, 10, 5348.	12.8	58
161	Mechanistic insights and potential therapeutic approaches for <i>NUP98</i> rearranged hematologic malignancies. Blood, 2020, 136, 2275-2289.	1.4	58
162	<i>TP53</i> Mutations in Hypodiploid Acute Lymphoblastic Leukemia. Cold Spring Harbor Perspectives in Medicine. 2017. 7. a026286.	6.2	57

#	Article	IF	CITATIONS
163	Germline Lysine-Specific Demethylase 1 (<i>LSD1/KDM1A</i>) Mutations Confer Susceptibility to Multiple Myeloma. Cancer Research, 2018, 78, 2747-2759.	0.9	56
164	Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with <i>GOLGA5-JAK2</i> fusion and induction failure. Haematologica, 2018, 103, e427-e431.	3.5	56
165	Reference alignment of SNP microarray signals for copy number analysis of tumors. Bioinformatics, 2009, 25, 315-321.	4.1	55
166	Bcl-2 Is a Therapeutic Target for Hypodiploid B-Lineage Acute Lymphoblastic Leukemia. Cancer Research, 2019, 79, 2339-2351.	0.9	55
167	PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia, 2016, 30, 1375-1387.	7.2	53
168	ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood, 2018, 132, 861-865.	1.4	53
169	Glutathione S-transferase polymorphisms and skin cancer after renal transplantation. Kidney International, 2000, 58, 2186-2193.	5.2	52
170	Acquired variation outweighs inherited variation in whole genome analysis of methotrexate polyglutamate accumulation in leukemia. Blood, 2009, 113, 4512-4520.	1.4	52
171	New Strategies in Acute Lymphoblastic Leukemia: Translating Advances in Genomics into Clinical Practice. Clinical Cancer Research, 2011, 17, 396-400.	7.0	52
172	High prevalence of relapse in children with Philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica, 2017, 102, e490-e493.	3.5	52
173	Notch/HES1-mediated PARP1 activation: a cell type–specific mechanism for tumor suppression. Blood, 2011, 117, 2891-2900.	1.4	51
174	CRLF2-Positive B-Cell Acute Lymphoblastic Leukemia in Adult Patients. American Journal of Clinical Pathology, 2017, 147, 357-363.	0.7	51
175	Identification of Potent, Selective, and Orally Bioavailable Small-Molecule GSPT1/2 Degraders from a Focused Library of Cereblon Modulators. Journal of Medicinal Chemistry, 2021, 64, 7296-7311.	6.4	51
176	Advances in the Genetics of High-Risk Childhood B-Progenitor Acute Lymphoblastic Leukemia and Juvenile Myelomonocytic Leukemia: Implications for Therapy. Clinical Cancer Research, 2012, 18, 2754-2767.	7.0	50
177	Genomeâ€Wide Study Links <i>PNPLA3</i> Variant With Elevated Hepatic Transaminase After Acute Lymphoblastic Leukemia Therapy. Clinical Pharmacology and Therapeutics, 2017, 102, 131-140.	4.7	50
178	Genomic profiling of high-risk acute lymphoblastic leukemia. Leukemia, 2010, 24, 1676-1685.	7.2	49
179	Evaluation of the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of the JAK Inhibitor AZD1480 against JAK-Mutated Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2015, 14, 364-374. 	4.1	49
180	Genomic profiling of B-progenitor acute lymphoblastic leukemia. Best Practice and Research in Clinical Haematology, 2011, 24, 489-503.	1.7	47

#	Article	IF	CITATIONS
181	<i>Lmo2</i> Induces Hematopoietic Stem Cell-Like Features in T-Cell Progenitor Cells Prior to Leukemia. Stem Cells, 2013, 31, 882-894.	3.2	47
182	Comparison of genome sequencing and clinical genotyping for pharmacogenes. Clinical Pharmacology and Therapeutics, 2016, 100, 380-388.	4.7	46
183	LIM Domain Only-2 (LMO2) Induces T-Cell Leukemia by Two Distinct Pathways. PLoS ONE, 2014, 9, e85883.	2.5	46
184	TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget, 2015, 6, 15828-15841.	1.8	46
185	Fas gene promoter polymorphisms in primary Sjogren's syndrome. Annals of the Rheumatic Diseases, 2004, 63, 98-101.	0.9	45
186	Mannose-binding lectin status is associated with risk of major infection following myeloablative sibling allogeneic hematopoietic stem cell transplantation. Blood, 2008, 112, 2120-2128.	1.4	45
187	Rare allelic forms of <i>PRDM9</i> associated with childhood leukemogenesis. Genome Research, 2013, 23, 419-430.	5.5	45
188	Clinical impact of <i>ABL1</i> kinase domain mutations and <i>IKZF1</i> deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665. Leukemia and Lymphoma, 2016, 57, 2298-2306.	1.3	45
189	Drugging DNA repair to target T-ALL cells. Leukemia and Lymphoma, 2018, 59, 1746-1749.	1.3	45
190	Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukemia in Hispanics. Blood, 2019, 133, 724-729.	1.4	44
191	Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nature Cancer, 2020, 1, 329-344.	13.2	44
192	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	4.6	43
193	Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 2021, 10, 3792.	2.4	43
194	Shared acquired genomic changes in zebrafish and human T-ALL. Oncogene, 2011, 30, 4289-4296.	5.9	42
195	Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget, 2018, 9, 8027-8041.	1.8	42
196	Polymorphisms in immunoregulatory genes and the risk of histologic chorioamnionitis in Caucasoid women: a case control study. BMC Pregnancy and Childbirth, 2005, 5, 4.	2.4	41
197	Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL. JCI Insight, 2016, 1, .	5.0	41
198	New Directions in the Genomics of Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2007, 13, 127-144.	2.0	40

#	Article	IF	CITATIONS
199	The Biology of B-Progenitor Acute Lymphoblastic Leukemia. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a034835.	6.2	40
200	Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia, 2021, 35, 3272-3277.	7.2	40
201	Ikaros: Exploiting and targeting the hematopoietic stem cell niche inÂB-progenitor acute lymphoblastic leukemia. Experimental Hematology, 2017, 46, 1-8.	0.4	38
202	Integrated Genomic Analysis Identifies <i>UBTF</i> Tandem Duplications as a Recurrent Lesion in Pediatric Acute Myeloid Leukemia. Blood Cancer Discovery, 2022, 3, 194-207.	5.0	38
203	Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood, 2019, 134, 1227-1237.	1.4	37
204	Molecular basis of <i>ETV6</i> -mediated predisposition to childhood acute lymphoblastic leukemia. Blood, 2021, 137, 364-373.	1.4	37
205	Assessment of male CVID patients for mutations in the Btk gene: how many have been misdiagnosed?. Clinical and Experimental Immunology, 2001, 124, 465-469.	2.6	36
206	Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias. Blood, 2015, 126, 2479-2483.	1.4	36
207	Clinical utility of whole-genome sequencing in precision oncology. Seminars in Cancer Biology, 2022, 84, 32-39.	9.6	35
208	Association of Genetic Ancestry With the Molecular Subtypes and Prognosis of Childhood Acute Lymphoblastic Leukemia. JAMA Oncology, 2022, 8, 354.	7.1	35
209	MLL rearrangements impact outcome in HOXA-deregulated T-lineage acute lymphoblastic leukemia: a Children's Oncology Group Study. Leukemia, 2016, 30, 1909-1912.	7.2	34
210	Molecular role of the <scp>PAX</scp> 5― <scp>ETV</scp> 6 oncoprotein in promoting Bâ€cell acute lymphoblastic leukemia. EMBO Journal, 2017, 36, 718-735.	7.8	34
211	Degradation of Janus kinases in <i>CRLF2</i> -rearranged acute lymphoblastic leukemia. Blood, 2021, 138, 2313-2326.	1.4	34
212	Ikaros and acute leukemia. Leukemia and Lymphoma, 2008, 49, 847-849.	1.3	32
213	YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. Journal of Hematology and Oncology, 2015, 8, 39.	17.0	32
214	New therapeutic opportunities from dissecting the pre-B leukemia bone marrow microenvironment. Leukemia, 2018, 32, 2326-2338.	7.2	32
215	Genome-Wide Association Study of Susceptibility Loci for T-Cell Acute Lymphoblastic Leukemia in Children. Journal of the National Cancer Institute, 2019, 111, 1350-1357.	6.3	32
216	Mixedâ€phenotype acute leukemia: A cohort and consensus research strategy from the Children's Oncology Group Acute Leukemia of Ambiguous Lineage Task Force. Cancer, 2020, 126, 593-601.	4.1	32

#	Article	IF	CITATIONS
217	Outcomes of paediatric patients with B-cell acute lymphocytic leukaemia with ABL-class fusion in the pre-tyrosine-kinase inhibitor era: a multicentre, retrospective, cohort study. Lancet Haematology,the, 2021, 8, e55-e66.	4.6	32
218	Deletion of <i>IKZF1</i> and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2009, 360, 1787-1788.	27.0	31
219	Assessing telomeric DNA content in pediatric cancers using whole-genome sequencing data. Genome Biology, 2012, 13, R113.	9.6	31
220	VPREB1 deletions occur independent of lambda light chain rearrangement in childhood acute lymphoblastic leukemia. Leukemia, 2014, 28, 216-220.	7.2	31
221	How advanced are we in targeting novel subtypes of ALL?. Best Practice and Research in Clinical Haematology, 2019, 32, 101095.	1.7	31
222	The acquisition of molecular drivers in pediatric therapy-related myeloid neoplasms. Nature Communications, 2021, 12, 985.	12.8	31
223	Highly sensitive MRD tests for ALL based on the IKZF1 Δ3–6 microdeletion. Leukemia, 2012, 26, 1414-1416.	7.2	30
224	OBI-3424, a Novel AKR1C3-Activated Prodrug, Exhibits Potent Efficacy against Preclinical Models of T-ALL. Clinical Cancer Research, 2019, 25, 4493-4503.	7.0	30
225	A rapid method of haplotyping HFE mutations and linkage disequilibrium in a Caucasoid population. Gut, 1998, 42, 566-569.	12.1	29
226	Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nature Genetics, 2022, 54, 170-179.	21.4	29
227	Rapid genotyping of transforming growth factor β ₁ gene polymorphisms in a UK Caucasoid control population using the polymerase chain reaction and sequenceâ€specific primers. Tissue Antigens, 1998, 52, 573-578.	1.0	28
228	Advances in the Genetics and Therapy of Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e314-e322.	3.8	28
229	Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers. Blood, 2020, 136, 698-714.	1.4	28
230	Cotargeting BCL-2 and MCL-1 in high-risk B-ALL. Blood Advances, 2020, 4, 2762-2767.	5.2	28
231	Molecular markers in ALL: Clinical implications. Best Practice and Research in Clinical Haematology, 2020, 33, 101193.	1.7	28
232	Genomic Polymorphism and Allogeneic Hematopoietic Transplantation Outcome. Biology of Blood and Marrow Transplantation, 2006, 12, 19-27.	2.0	27
233	Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome. Journal of Experimental Medicine, 2017, 214, 773-791.	8.5	27
234	Acquired isolated factor VII deficiency associated with severe bleeding and successful treatment with recombinant FVIIa (NovoSeven). Blood Coagulation and Fibrinolysis, 2004, 15, 347-351.	1.0	26

#	Article	IF	CITATIONS
235	Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo. Blood, 2013, 121, 4884-4893.	1.4	26
236	Variation in immune response genes and chronic Q fever. Concepts: preliminary test with post-Q fever fatigue syndrome. Genes and Immunity, 2003, 4, 82-85.	4.1	25
237	Modeling and targeting of erythroleukemia by hematopoietic genome editing. Blood, 2021, 137, 1628-1640.	1.4	25
238	Epigenetic silencing of <i><scp>SOCS</scp>5</i> potentiates <scp>JAK</scp> â€ <scp>STAT</scp> signaling and progression of Tâ€cell acute lymphoblastic leukemia. Cancer Science, 2019, 110, 1931-1946.	3.9	24
239	Safety and Efficacy of Venetoclax in Combination with Navitoclax in Adult and Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Blood, 2019, 134, 285-285.	1.4	24
240	Interleukin-7 receptor α mutational activation can initiate precursor B-cell acute lymphoblastic leukemia. Nature Communications, 2021, 12, 7268.	12.8	24
241	Mannose-binding Lectin and Infection Following Allogeneic Hemopoietic Stem Cell Transplantation. Leukemia and Lymphoma, 2004, 45, 247-256.	1.3	23
242	Genomic analysis of acute leukemia. International Journal of Laboratory Hematology, 2009, 31, 384-397.	1.3	23
243	How new advances in genetic analysis are influencing the understanding and treatment of childhood acute leukemia. Current Opinion in Pediatrics, 2011, 23, 34-40.	2.0	23
244	Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts. Leukemia, 2015, 29, 177-187.	7.2	23
245	Relapse of BCR-ABL1-like ALL mediated by the ABL1 kinase domain mutation T315I following initial response to dasatinib treatment. Leukemia, 2015, 29, 230-232.	7.2	23
246	Modulation of Navitoclax Sensitivity by Dihydroartemisinin-Mediated MCL-1 Repression in BCR-ABL+ B-Lineage Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2017, 23, 7558-7568.	7.0	23
247	Advances in the Genetics and Therapy of Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 36, e314-e322.	3.8	23
248	Analytical demands to use whole-genome sequencing in precision oncology. Seminars in Cancer Biology, 2022, 84, 16-22.	9.6	22
249	Germline deletion of ETV6 in familial acute lymphoblastic leukemia. Blood Advances, 2019, 3, 1039-1046.	5.2	21
250	RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	20
251	The age of the bone marrow microenvironment influences B-cell acute lymphoblastic leukemia progression via CXCR5-CXCL13. Blood, 2021, 138, 1870-1884.	1.4	20
252	Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	20

#	Article	IF	CITATIONS
253	Integrated Transcriptomic and Genomic Sequencing Identifies Prognostic Constellations of Driver Mutations in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Blood, 2019, 134, LBA-4-LBA-4.	1.4	20
254	Mannose-binding lectin and maladies of the bowel and liver. World Journal of Gastroenterology, 2006, 12, 6420.	3.3	20
255	Enhancer retargeting of <i>CDX2</i> and <i>UBTF::ATXN7L3</i> define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood, 2022, 139, 3519-3531.	1.4	20
256	Mannose-binding lectin promoter and structural gene variants in sarcoidosis. European Journal of Clinical Investigation, 2000, 30, 549-552.	3.4	19
257	The Role of TET2 in Hematologic Neoplasms. Cancer Cell, 2011, 20, 1-2.	16.8	19
258	Very simply explicitly invertible approximations of normal cumulative and normal quantile function. Applied Mathematical Sciences, 0, 8, 4323-4341.	0.1	19
259	Pharmacogenomics of intracellular methotrexate polyglutamates in patients' leukemia cells in vivo. Journal of Clinical Investigation, 2020, 130, 6600-6615.	8.2	18
260	Highâ€resolution HLAâ€DQB1 typing using the polymerase chain reaction and sequenceâ€specific primers. Tissue Antigens, 1997, 50, 688-692.	1.0	17
261	Genomic Assessment of Pediatric Acute Leukemia. Cancer Journal (Sudbury, Mass), 2005, 11, 268-282.	2.0	17
262	Cytochrome P450 1A2 is a target antigen in hepatitic graft-versus-host disease. Bone Marrow Transplantation, 2006, 38, 703-705.	2.4	17
263	Advances in the Biology of Acute Lymphoblastic Leukemia—From Genomics to the Clinic. Journal of Adolescent and Young Adult Oncology, 2011, 1, 77-86.	1.3	17
264	A genomic random interval model for statistical analysis of genomic lesion data. Bioinformatics, 2013, 29, 2088-2095.	4.1	17
265	ERG Deletions Define a Novel Subtype of B-Progenitor Acute Lymphoblastic Leukemia Blood, 2007, 110, 691-691.	1.4	17
266	JAK2—a new player in acute lymphoblastic leukaemia. Lancet, The, 2008, 372, 1448-1450.	13.7	16
267	Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis. Leukemia, 2018, 32, 38-48.	7.2	16
268	Association of <i>GATA3</i> Polymorphisms With Minimal Residual Disease and Relapse Risk in Childhood Acute Lymphoblastic Leukemia. Journal of the National Cancer Institute, 2021, 113, 408-417.	6.3	16
269	Single Nucleotide Polymorphism Microarray Analysis of Genetic Alterations in Cancer. Methods in Molecular Biology, 2011, 730, 235-258.	0.9	16
270	Development of Potent and Selective Janus Kinase 2/3 Directing PG–PROTACs. ACS Medicinal Chemistry Letters, 2022, 13, 475-482.	2.8	16

#	Article	IF	CITATIONS
271	RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data. Leukemia, 2022, 36, 1492-1498.	7.2	16
272	Novel ALK fusion in anaplastic large cell lymphoma involving EEF1G, a subunit of the eukaryotic elongation factor-1 complex. Leukemia, 2017, 31, 743-747.	7.2	15
273	A Tumor Suppressor Enhancer of <i>PTEN</i> in T-cell Development and Leukemia. Blood Cancer Discovery, 2021, 2, 92-109.	5.0	15
274	Next Generation Transcriptomic Resequencing Identifies Novel Genetic Alterations in High-Risk (HR) Childhood Acute Lymphoblastic Leukemia (ALL): A Report From the Children's Oncology Group (COG) HR ALL TARGET Project Blood, 2009, 114, 704-704.	1.4	15
275	Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nature Cancer, 2022, 3, 768-782.	13.2	15
276	Mutations of NOTCH1, FBXW7, and prognosis in T-lineage acute lymphoblastic leukemia. Haematologica, 2009, 94, 1338-1340.	3.5	14
277	Leukemic presentation of ALK-positive anaplastic large cell lymphoma with a novel partner, poly(A) binding protein cytoplasmic 1 (PABPC1), responding to single-agent crizotinib. Haematologica, 2019, 104, e218-e221.	3.5	14
278	Characterization of Novel Subtypes in B Progenitor Acute Lymphoblastic Leukemia. Blood, 2018, 132, 565-565.	1.4	14
279	The PAX5â€JAK2 translocation acts as dualâ€hit mutation that promotes aggressive Bâ€cell leukemia via nuclear STAT5 activation. EMBO Journal, 2022, 41, e108397.	7.8	14
280	Lack of association between mannose-binding lectin gene polymorphisms and primary Sjögren's syndrome. Arthritis and Rheumatism, 2000, 43, 2851-2852.	6.7	13
281	LOHAS: lossâ€ofâ€heterozygosity analysis suite. Genetic Epidemiology, 2011, 35, 247-260.	1.3	13
282	Mutant PRPS1: a new therapeutic target in relapsed acute lymphoblastic leukemia. Nature Medicine, 2015, 21, 553-554.	30.7	13
283	Co-occurrence of CRLF2-rearranged and Ph+ acute lymphoblastic leukemia: a report of four patients. Haematologica, 2017, 102, e514-e517.	3.5	13
284	CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk. Nature Genetics, 2022, 54, 637-648.	21.4	13
285	Rapid haplotyping of mutations in the Duffy gene using the polymerase chain reaction and sequenceâ€specific primers. Tissue Antigens, 1998, 51, 195-199.	1.0	12
286	Therapeutic potential of ruxolitinib and ponatinib in patients with <i>EPOR</i> -rearranged Philadelphia chromosome-like acute lymphoblastic leukemia. Haematologica, 2021, 106, 2763-2767.	3.5	12
287	Pax5 Haploinsufficiency Cooperates with BCR-ABL1 to Induce Acute Lymphoblastic Leukemia. Blood, 2008, 112, 293-293.	1.4	12
288	Ikzf1 Haploinsufficiency Contributes to the Pathogenesis of BCR-ABL1 Positive Acute Lymphoblastic Leukemia Blood, 2009, 114, 678-678.	1.4	12

#	Article	IF	CITATIONS
289	Structure–function relationships explain CTCF zinc finger mutation phenotypes in cancer. Cellular and Molecular Life Sciences, 2021, 78, 7519-7536.	5.4	12
290	Tumor-Specific Genetic Lesions and Their Influence on Therapy in Pediatric Acute Lymphoblastic Leukemia. Hematology American Society of Hematology Education Program, 2006, 2006, 118-122.	2.5	11
291	Genetic Alterations Targeting Lymphoid Development in Acute Lymphoblastic Leukemia. Current Topics in Developmental Biology, 2011, 94, 171-196.	2.2	11
292	Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Advances, 2017, 1, 2361-2374.	5.2	11
293	Activating killerâ€cell immunoglobulinâ€like receptor haplotype influences clinical outcome following HLAâ€matched sibling haematopoietic stem cell transplantation. Hla, 2018, 92, 74-82.	0.6	11
294	Inotuzumab Ozogamicin (Ino) May Overcome the Impact of Philadelphia Chromosome (Ph)-like Phenotype in Adult Patients (pts) with Relapsed/Refractory (R/R) Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 1641-1641.	1.4	11
295	Retroviral and Chemical Mutagenesis Identifies Pax5 as a Tumor Suppressor in B-Progenitor Acute Lymphoblastic Leukemia. Blood, 2008, 112, 1789-1789.	1.4	11
296	ZNF384 Fusion Oncoproteins Drive Lineage Aberrancy in Acute Leukemia. Blood Cancer Discovery, 2022, 3, 240-263.	5.0	11
297	Loss of p19Arf in a Rag1â^'/â^' B-cell precursor population initiates acute B-lymphoblastic leukemia. Blood, 2011, 118, 544-553.	1.4	10
298	Clinical interpretation of whole-genome and whole-transcriptome sequencing for precision oncology. Seminars in Cancer Biology, 2022, 84, 23-31.	9.6	10
299	Mutations in the RAS Signaling, B-Cell Development, TP53/RB1, and JAK Signaling Pathways Are Common in High Risk B-Precursor Childhood Acute Lymphoblastic Leukemia (ALL): A Report From the Children's Oncology Group (COG) High-Risk (HR) ALL TARGET Project Blood, 2009, 114, 85-85.	1.4	10
300	Human cytomegalovirus infection is not increased in common variable immunodeficiency. Journal of Clinical Immunology, 1996, 16, 272-277.	3.8	9
301	Advances in the genomics of allogeneic haemopoietic stem cell transplantation. Drug Development Research, 2004, 62, 273-292.	2.9	9
302	Genetic characterization and therapeutic targeting of <i>MYC</i> â€rearranged T cell acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 185, 169-174.	2.5	9
303	Genome-Wide Association Study of Susceptibility Loci for <i>TCF3-PBX1</i> Acute Lymphoblastic Leukemia in Children. Journal of the National Cancer Institute, 2021, 113, 933-937.	6.3	9
304	At three years, patients with acute lymphoblastic leukaemia are still at risk for relapse. Results of the international MRC UKALLXII/ECOG E2993 trial. British Journal of Haematology, 2020, 191, 37-43.	2.5	9
305	Development of Mast Cell and Eosinophil Hyperplasia and HLH/MAS-Like Disease in NSG-SGM3 Mice Receiving Human CD34+ Hematopoietic Stem Cells or Patient-Derived Leukemia Xenografts. Veterinary Pathology, 2021, 58, 181-204.	1.7	9
306	Incidence of Germline Mutations in Cancer-Predisposition Genes in Children with Hematologic Malignancies: a Report from the Pediatric Cancer Genome Project. Blood, 2014, 124, 127-127.	1.4	9

#	Article	IF	CITATIONS
307	Redefining the biological basis of lineage-ambiguous leukemia through genomics: BCL11B deregulation in acute leukemias of ambiguous lineage. Best Practice and Research in Clinical Haematology, 2021, 34, 101329.	1.7	9
308	Integrated Genetic and Epigenetic Analysis of Childhood Acute Lymphoblastic Leukemia Reveals a Synergistic Role for Structural and Epigenetic Lesions In Determining Disease Phenotype. Blood, 2010, 116, 537-537.	1.4	9
309	BMP2/SMAD pathway activation in JAK2/p53-mutant megakaryocyte/erythroid progenitors promotes leukemic transformation. Blood, 2022, 139, 3630-3646.	1.4	9
310	Mannose-binding lectin deficiency does not increase the prevalence of Helicobacter pylori seropositivity. European Journal of Gastroenterology and Hepatology, 2007, 19, 147-152.	1.6	8
311	Safety and Efficacy of the BCL Inhibitors Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S184-S185.	0.4	8
312	ShinyCNV: a Shiny/R application to view and annotate DNA copy number variations. Bioinformatics, 2019, 35, 126-129.	4.1	8
313	Antileukemia Effects of Notch-Mediated Inhibition of Oncogenic PLK1 in B-Cell Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2019, 18, 1615-1627.	4.1	8
314	The Heme-Regulated Inhibitor Pathway Modulates Susceptibility of Poor Prognosis B-Lineage Acute Leukemia to BH3-Mimetics. Molecular Cancer Research, 2021, 19, 636-650.	3.4	8
315	Epigenetic Modulation of CD48 By NPM-ALK Promotes Immune Evasion in ALK+ ALCL. Blood, 2019, 134, 1510-1510.	1.4	8
316	Mutations in the B-Cell Transcription Factor PAX5 Found in B-Progenitor Acute Lymphoblastic Leukemia Impair Normal PAX5 Activity Blood, 2006, 108, 613-613.	1.4	8
317	Acute Lymphoblastic Leukemia in Children with Down Syndrome: A Report From the Ponte Di Legno Study Group,. Blood, 2011, 118, 3579-3579.	1.4	8
318	Genomic Characterization and Experimental Modeling Of BCR-ABL1-Like Acute Lymphoblastic Leukemia. Blood, 2013, 122, 232-232.	1.4	8
319	Integrated Genomic and Mutational Profiling Of Adolescent and Young Adult ALL Identifies a High Frequency Of BCR-ABL1-Like ALL with Very Poor Outcome. Blood, 2013, 122, 825-825.	1.4	8
320	CytofIn enables integrated analysis of public mass cytometry datasets using generalized anchors. Nature Communications, 2022, 13, 934.	12.8	8
321	Amino acid stress response genes promote L-asparaginase resistance in pediatric acute lymphoblastic leukemia. Blood Advances, 2022, 6, 3386-3397.	5.2	8
322	Generation of Human Acute Lymphoblastic Leukemia Xenografts for Use in Oncology Drug Discovery. Current Protocols in Pharmacology, 2015, 68, 14.32.1-14.32.19.	4.0	7
323	Lack of Somatic Sequence Mutations In Protein Tyrosine Kinase Genes Other Than the JAK Kinase Family In High Risk B-Precursor Childhood Acute Lymphoblastic Leukemia (ALL): A Report From the Children's Oncology Group (COG) High-Risk (HR) ALL TARGET Project. Blood, 2010, 116, 2752-2752.	1.4	7
324	The landscape of coding RNA editing events in pediatric cancer. BMC Cancer, 2021, 21, 1233.	2.6	7

#	Article	IF	CITATIONS
325	A hypogammaglobulinaemic man with respiratory failure. Postgraduate Medical Journal, 1998, 74, 503-504.	1.8	6
326	Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene, 2020, 39, 6920-6934.	5.9	6
327	Molecular Biology of Childhood Leukemia. Annual Review of Cancer Biology, 2021, 5, 95-117.	4.5	6
328	Aurora A kinase as a target for therapy in <i>TCF3-HLF</i> rearranged acute lymphoblastic leukemia. Haematologica, 2021, 106, 2990-2994.	3.5	6
329	Outcomes of Patients with CRLF2-Overexpressing Acute Lymphoblastic Leukemia without Down Syndrome: A Report from the Children's Oncology Group. Blood, 2020, 136, 45-46.	1.4	6
330	Whole Genome Sequence Analysis of 22 MLL Rearranged Infant Acute Lymphoblastic Leukemias Reveals Remarkably Few Somatic Mutations: A Report From the St Jude Childrenâ€`s Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 69-69.	1.4	6
331	Genetic Variation in NFATC2 Is Associated with a Higher Risk of Asparaginase Allergy. Blood, 2014, 124, 63-63.	1.4	6
332	Welcoming a new age for gene therapy in hematology. Blood, 2016, 127, 2523-2524.	1.4	5
333	<i>GATA3</i> rs3824662A allele in Bâ€cell acute lymphoblastic leukemia in adults, adolescents and young adults: association with <i>CRLF2</i> rearrangement and poor prognosis. American Journal of Hematology, 2021, 96, E71-E74.	4.1	5
334	Association of Combined Focal 22q11.22 Deletion and IKZF1 Alterations With Outcomes in Childhood Acute Lymphoblastic Leukemia. JAMA Oncology, 2021, 7, 1521-1528.	7.1	5
335	Glutathione S-transferase polymorphisms and skin cancer after renal transplantation. Kidney International, 2000, 58, 2186-2193.	5.2	5
336	Venetoclax and Navitoclax in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Blood, 2018, 132, 3966-3966.	1.4	5
337	High Frequency and Poor Outcome of Ph-like Acute Lymphoblastic Leukemia in Adults. Blood, 2015, 126, 2618-2618.	1.4	5
338	mTOR Kinase Inhibitors Enhance Efficacy of TKIs in Preclinical Models of Ph-like B-ALL. Blood, 2016, 128, 2763-2763.	1.4	5
339	BCL-2, a Therapeutic Target for High Risk Hypodiploid B-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 280-280.	1.4	5
340	N-Myc Is Overexpressed In Both Murine and Human Early T-Cell Precursor Leukemia and Is Sufficient To Initiate this Leukemia In Multipotent Primitive Arf-/- thymocytes. Blood, 2013, 122, 348-348.	1.4	5
341	The Genomic Landscape of Childhood Acute Lymphoblastic Leukemia. Blood, 2019, 134, 649-649.	1.4	5
342	The ASH Agenda for Hematology Research: a roadmap for advancing scientific discovery and cures for hematologic diseases. Blood Advances, 2018, 2, 2430-2432.	5.2	4

#	Article	IF	CITATIONS
343	Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia with kinase fusions in Taiwan. Scientific Reports, 2021, 11, 5802.	3.3	4
344	Abstract 4869: Whole genome sequence analysis of MLL rearranged infant acute lymphoblastic leukemias reveals remarkably few somatic mutations: A Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. , 2012, , .		4
345	Thymic Stromal Lymphopoietin Stimulation of Pediatric Acute Lymphoblastic Leukemias with CRLF2 Alterations Induces JAK/STAT and PI3K Phosphosignaling. Blood, 2010, 116, 410-410.	1.4	4
346	Comparison Of Mutational Profiles Of Diagnosis and Relapsed Pediatric B-Acute Lymphoblastic Leukemia: A Report From The COG ALL Target Project. Blood, 2013, 122, 824-824.	1.4	4
347	The Genomic Landscape of Childhood T-Lineage Acute Lymphoblastic Leukemia. Blood, 2015, 126, 691-691.	1.4	4
348	The Frequency and Outcome of Ph-like ALL Associated Abnormalities in Childhood Acute Lymphoblastic Leukaemia Treated on MRC UKALL2003. Blood, 2016, 128, 2914-2914.	1.4	4
349	Outcomes of Children, Adolescents, and Young Adults with Acute Lymphoblastic Leukemia Based on Blast Genotype at Diagnosis: A Report from the Children's Oncology Group. Blood, 2016, 128, 451-451.	1.4	4
350	Genomic Landscape of Pediatric Mixed Phenotype Acute Leukemia. Blood, 2016, 128, 454-454.	1.4	4
351	Multiomic Profiling of Central Nervous System Leukemia Identifies mRNA Translation as a Therapeutic Target. Blood Cancer Discovery, 2022, 3, 16-31.	5.0	4
352	IKZF1 and 22q11.22 Deletions and PDGFRA Gains Are Associated with Poor Outcome in Down Syndrome Acute Lymphoblastic Leukemia. Blood, 2012, 120, 289-289.	1.4	4
353	lkaros Mediates Antigen Escape Following CD19 CAR T Cell Therapy in r/r B-ALL. Blood, 2021, 138, 613-613.	1.4	4
354	Novel Genetic Subgroups Inform on Shared Pathobiology within Adult and Pediatric Burkitt Lymphoma. Blood, 2021, 138, 806-806.	1.4	4
355	Therapy of pediatric ALL: from Bowie to Obama. Blood, 2013, 122, 2531-2532.	1.4	3
356	Characterization of PAX5-driven Subtypes in B-progenitor Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S183.	0.4	3
357	Immunophenotyping of Murine Precursor B-Cell Leukemia/Lymphoma: A Comparison of Immunohistochemistry and Flow Cytometry. Veterinary Pathology, 2019, 56, 950-958.	1.7	3
358	The <i>EBF1-PDGFRB</i> T6811 mutation is highly resistant to imatinib and dasatinib <i>in vitro</i> and detectable in clinical samples prior to treatment. Haematologica, 2021, 106, 2242-2245.	3.5	3
359	Genomic Determinants of Response to Blinatumomab in Relapsed/Refractory (R/R) B-Cell Precursor Acute Lymphoblastic Leukemia in Adults. Blood, 2018, 132, 1552-1552.	1.4	3
360	Genome-Wide Analysis of Genetic Alterations in Chronic Myelogenous Leukemia Blood, 2008, 112, 1089-1089.	1.4	3

#	ARTICLE	IF	CITATIONS
361	Genome-Wide Analysis of Genetic Alterations In Hypodiploid Acute Lymphoblastic Leukemia Identifies a High Frequency of Mutations Targeting the IKAROS Gene Family and Ras Signaling. Blood, 2010, 116, 411-411.	1.4	3
362	The Role of Dominant-Negative IKAROS Mutations In the Pathogenesis and Treatment Responsiveness of BCR-ABL1 positive Acute Lymphoblastic Leukemia. Blood, 2010, 116, 540-540.	1.4	3
363	A BCR-ABL1-Like Gene Expression Profile Confers a Poor Prognosis In Patients with High-Risk Acute Lymphoblastic Leukemia (HR-ALL): A Report From Children's Oncology Group (COG) AALL0232. Blood, 2011, 118, 743-743.	1.4	3
364	Defining Functional Heterogeneity In Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1365-1365.	1.4	3
365	Functional Analysis of Kinase-Activating Fusions in Ph-like Acute Lymphoblastic Leukemia. Blood, 2014, 124, 786-786.	1.4	3
366	Combined Targeting of JAK2 with a Type II JAK2 Inhibitor and mTOR with a TOR Kinase Inhibitor Constitutes Synthetic Activity in JAK2-Driven Ph-like Acute Lymphoblastic Leukemia. Blood, 2015, 126, 2529-2529.	1.4	3
367	Efficacy of Focal Adhesion Kinase Inhibition in Combination with Dasatinib in BCR-ABL1 Acute Lymphoblastic Leukemia. Blood, 2015, 126, 3766-3766.	1.4	3
368	Genetic Modeling and Therapeutic Targeting of ETV6-NTRK3 with Loxo-101in Acute Lymphoblastic Leukemia. Blood, 2016, 128, 278-278.	1.4	3
369	Germline Genetic Variation in IKZF1 and Predisposition to Childhood Acute Lymphoblastic Leukemia. Blood, 2016, 128, LBA-2-LBA-2.	1.4	3
370	Genomic Landscape of Relapsed Acute Lymphoblastic Leukemia. Blood, 2015, 126, 692-692.	1.4	3
371	Phase II Study of the Hyper-CVAD Regimen in Combination with Ofatumumab (HCVAD-O) As Frontline Therapy for Adult Patients (pts) with CD20-Positive B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood, 2019, 134, 2577-2577.	1.4	3
372	Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 96-111.	5.0	3
373	Mannose-Binding Lectin and Liver Transplantation. Gastroenterology, 2005, 129, 1805-1806.	1.3	2
374	From Trees to the Forest: Genes to Genomics. Biology of Blood and Marrow Transplantation, 2011, 17, S52-S57.	2.0	2
375	Molecular genetics of acute lymphoblastic leukemia. , 0, , 168-203.		2
376	Integrative genomic analysis of B″ymphoblastic lymphoma with intrachromosomal amplification of chromosome 21. Pediatric Blood and Cancer, 2020, 67, e28357.	1.5	2
377	Cytogenetics and Molecular Genetics. , 2017, , 61-98.		2
378	Expression of TCF3-ZNF384 in Human Hematopoietic Cells Induces Lineage Disruption in Vitro and Acute Leukemia in Vivo. Blood, 2018, 132, 550-550.	1.4	2

#	Article	IF	CITATIONS
379	Prediction of Patients at Risk of CD19Neg Relapse Following CD19-Directed CAR T Cell Therapy in B Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2019, 134, 749-749.	1.4	2
380	Venetoclax and Navitoclax in Pediatric Patients with Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Blood, 2020, 136, 12-13.	1.4	2
381	Enhancer Hijacking of BCL11B Defines a Subtype of Lineage Ambiguous Acute Leukemia. Blood, 2020, 136, LBA-3-LBA-3.	1.4	2
382	Genome-Wide Profiling of High-Risk Pediatric Acute Lymphoblastic Leukemia (ALL): The ALL Pilot Project for the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) Initiative Blood, 2007, 110, 229-229.	1.4	2
383	High-Resolution SNP Array Profiling of Relapsed Acute Leukemia Identifies Genomic Abnormalities Distinct from Those Present at Diagnosis Blood, 2007, 110, 234-234.	1.4	2
384	High Content Screening Identifies Synthetic Lethality Of Retinoid Receptor Agonists In IKZF1-Mutated BCR-ABL1 positive Acute Lymphoblastic Leukemia. Blood, 2013, 122, 172-172.	1.4	2
385	Mixed Lineage Leukemia Rearrangements (MLL-R) Are Determinants of High Risk Disease in Homeobox A (HOXA)-deregulated T-Lineage Acute Lymphoblastic Leukemia: A Children's Oncology Group Study. Blood, 2015, 126, 694-694.	1.4	2
386	High-Risk Subtype of Ph-like Acute Lymphoblastic Leukemia (ALL) in Adults: Dismal Outcomes of CRLF2+ ALL Patients Treated with Intensive Chemotherapy. Blood, 2016, 128, 1082-1082.	1.4	2
387	The Genomic Landscape of Childhood and Adult Acute Erythroid Leukemia. Blood, 2016, 128, 39-39.	1.4	2
388	Pediatric Acute Myeloid Leukemia with Nucleophosmin Mutations Is Characterized by a Gene Expression Signature with Dysregulated HOX Gene Expression Distinct from MLL-Rearranged Leukemias Blood, 2005, 106, 2993-2993.	1.4	2
389	Genome-Wide Association Study Identifies a Novel Susceptibility Locus At 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethinically Diverse Populations. Blood, 2012, 120, 877-877.	1.4	2
390	Efficacy of ALL Therapy for WHO2016-Defined Mixed Phenotype Acute Leukemia: A Report from the Children's Oncology Group. Blood, 2017, 130, 883-883.	1.4	2
391	Recurrent Mutations of the <i>C-C Motif Chemokine Ligand 22</i> (<i>CCL22</i>) Define a Distinct Subgroup of Chronic Lymphoproliferative Disorder of NK Cells (CLPD-NK). Blood, 2020, 136, 19-19.	1.4	2
392	Enhanced Risk Stratification of 21,178 Children, Adolescents, and Young Adults with Acute Lymphoblastic Leukemia (ALL) Incorporating White Blood Count (WBC), Age, and Minimal Residual Disease (MRD) at Day 8 and 29 As Continuous Variables: A Children's Oncology Group (COG) Report. Blood. 2020, 136, 39-40.	1.4	2
393	Acute Leukemia Classification Using Transcriptional Profiles From Low-Cost Nanopore mRNA Sequencing. JCO Precision Oncology, 2022, 6, e2100326.	3.0	2
394	T-Lineage Lymphoblastic Lymphoma and Leukemia—a MASSive Problem. Cancer Cell, 2010, 18, 297-299.	16.8	1
395	<i>PHF6</i> mutations in Tâ€lineage acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2010, 55, 595-596.	1.5	1
396	Genomic Landscape of Acute Erythroid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S26-S27.	0.4	1

#	Article	IF	CITATIONS
397	IGF1 Brings Growing Pains for T-ALL LSCs. Cell Stem Cell, 2018, 23, 632-633.	11.1	1
398	Combination BCL-2 Inhibitor Therapy with Venetoclax and Navitoclax in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S184-S185.	0.4	1
399	Prognostic mutation constellations in acute myeloid leukaemia and myelodysplastic syndrome. Current Opinion in Hematology, 2021, 28, 101-109.	2.5	1
400	Abstract 4369: Rearrangements of the erythropoietin receptor are recurrent in Ph-like acute lymphoblastic leukemia and are sensitive to Jak2 inhibition. , 2015, , .		1
401	Abstract 4729: Frequency of actionable gene fusions in patients with Philadelphia chromosome-like (Ph-like) B-acute lymphoblastic leukemia (ALL): A retrospective study from the Children's Oncology Group (COG). , 2015, , .		1
402	Genetic Analysis of B-Cell Acute Lymphoblastic Leukemia Dissemination to the Central Nervous System Identifies Clonal Selection and Therapeutic Vulnerability. Blood, 2018, 132, 1542-1542.	1.4	1
403	Germline RUNX1 Variation and Predisposition to T-Cell Acute Lymphoblastic Leukemia in Children. Blood, 2019, 134, 653-653.	1.4	1
404	Ultra-High Resolution Analysis of Genomic Alterations in High-Risk Acute Lymphoblastic Leukemia Blood, 2008, 112, 2053-2053.	1.4	1
405	Gene Expression Profiling in Down Syndrome Acute Lymphoblastic Leukemia Identifies Distinct Profiles Associated with CRLF2 Expression Status Blood, 2009, 114, 2389-2389.	1.4	1
406	T-Cell Receptor Gene Deletions Are Associated with High Risk Features and Worse Outcome In Childhood Precursor B-Cell Acute Lymphoblastic Leukemia (ALL). Blood, 2010, 116, 275-275.	1.4	1
407	Genome-Wide DNA Methylation Analysis Reveals Biological and Clinical Insights In Relapsed Childhood Acute Lymphoblastic Leukemia: A Report From The COG ALL Target Project. Blood, 2013, 122, 3736-3736.	1.4	1
408	High Prevalence of Relapse in Australian Children with Ph-like Acute Lymphoblastic Leukemia Despite Risk Adapted Treatment. Blood, 2015, 126, 1419-1419.	1.4	1
409	ldentifying Drug-Resistant Mutations in Ebf1-Pdgfrb Ph-like Acute Lymphoblastic Leukemia. Blood, 2015, 126, 1423-1423.	1.4	1
410	Expression of an Oncogenic ERG isoform Characterizes a Distinct Subtype of B-Progenitor Acute Lymphoblastic Leukemia. Blood, 2015, 126, 693-693.	1.4	1
411	Comprehensive Functional Characterization of Germline ETV6 Variants Associated with Inherited Predisposition to Acute Lymphoblastic Leukemia in Children. Blood, 2016, 128, 1085-1085.	1.4	1
412	Burkitt Lymphoma Genome Sequencing Project (BLGSP): Introduction. Blood, 2016, 128, 1760-1760.	1.4	1
413	Relationship of <i> CRLF2</i> expression and outcome in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): A report from the Children's Oncology Group Journal of Clinical Oncology, 2011, 29, 9505-9505.	1.6	1
414	VpreB Surrogate Light Chain Expression in B-Lineage ALL: A Report from the Children's Oncology Group. Blood Advances, 2021, , .	5.2	1

#	Article	IF	CITATIONS
415	Genome-Wide Profiling of DNA Copy Number Abnormalities and Loss-Of-Heterozygosity in Pediatric Acute Myeloid Leukemia Using High-Resolution Single Nucleotide Polymorphism Microarrays Blood, 2006, 108, 106-106.	1.4	1
416	High Resolution Genomic Profiling Using Single Nucleotide Polymorphism Microarrays Identifies Multiple Novel Genomic Lesions in Pediatric Acute Lymphoblastic Leukemia Blood, 2006, 108, 108-108.	1.4	1
417	Genes Regulating B-Cell Development and Differentiation Are Mutated in 40% of Pediatric Acute Lymphoblastic Leukemia Blood, 2006, 108, 217-217.	1.4	1
418	Mannose-Binding Lectin Status Is Associated with Risk of Major Infection Following Myeloablative Sibling Allogeneic Hematopoietic Stem Cell Transplantation Blood, 2006, 108, 2928-2928.	1.4	1
419	IKZF1 (Ikaros) Deletions Are a Hallmark of BCR-ABL1 Positive Acute Lymphoblastic Leukemia Blood, 2007, 110, 721-721.	1.4	1
420	Acute Lymphoblastic Leukemia-Associated PAX5 Mutations Induce Aberrant B Cell Development. Blood, 2010, 116, 10-10.	1.4	1
421	CREBBP Mutations In Relapsed Acute Lymphoblastic Leukemia. Blood, 2010, 116, 413-413.	1.4	1
422	Targeting mTOR and JAK2 in Xenograft Models of CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL). Blood, 2011, 118, 249-249.	1.4	1
423	Abstract 4870: Integrated genomic analysis of hypodiploid acute lymphoblastic leukemia. , 2012, , .		1
424	Molecular Genetics in Children, Adolescents and Young Adults with Acute Lymphoblastic Leukemia and Acute Myeloid Leukemia. , 2012, , 121-142.		1
425	Genomic- and Transcriptomic Profiling Of Acute Lymphoblastic Leukemia With Dicentric Chromosomes. Blood, 2013, 122, 234-234.	1.4	1
426	A Genome-Wide Association Study of Susceptibility to Acute Lymphoblastic Leukemia in Adolescents and Young Adults. Blood, 2014, 124, 132-132.	1.4	1
427	Characterization of Leukemias with ETV6-ABL1 Fusion. Blood, 2015, 126, 84-84.	1.4	1
428	Whole Exome Sequencing of Pediatric Acute Lymphoblastic Leukemia Patients Identify Mutations in 11 Pathways: A Report from the Children's Oncology Group. Blood, 2016, 128, 455-455.	1.4	1
429	Relapse-Initiating Clones Preexisting at Diagnosis in B- Cell Acute Lymphoblastic Leukemia Help Predict Molecular Pathways of Relapse. Blood, 2018, 132, 915-915.	1.4	1
430	Significant In Vivo Sensitivity to Aurora Kinase Inhibition in TCF3-Hlf rearranged Acute Lymphoblastic Leukemia. Blood, 2018, 132, 4026-4026.	1.4	1
431	NUP98-KDM5A Fusion Induces Hematopoietic Cell Proliferation and Alters Myelo-Erythropoietic Differentiation. Blood, 2019, 134, 3775-3775.	1.4	1
432	Outcomes of Patients with Down Syndrome and CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL): A Report from the Children's Oncology Group (COG). Blood, 2020, 136, 44-45.	1.4	1

#	Article	IF	CITATIONS
433	Multi-Omic Based Antigen Discovery for the Immunotherapy of Pediatric Acute T Cell Lymphoblastic Leukemia. Blood, 2020, 136, 17-18.	1.4	1
434	HEPATITIS C AFTER INTRAVENOUS IMMUNOGLOBULIN. Annals of Allergy, Asthma and Immunology, 1997, 79, 466.	1.0	0
435	30: An integrated genetic-protein analysis of the TNF-family pathway predicts for GVHD. Biology of Blood and Marrow Transplantation, 2007, 13, 13-14.	2.0	0
436	Mannose-binding lectin and gastric cancer. International Journal of Cancer, 2007, 120, 2751-2752.	5.1	0
437	47-OR: The effect of KIR haplotype on clinical outcome following HLA-matched sibling haemopoietic stem cell transplantation. Human Immunology, 2009, 70, S169.	2.4	0
438	IL7r receptor mutants initiate leukemia from multipotent primitive thymocytes in a novel mouse model of ETP leukemia. Experimental Hematology, 2013, 41, S58.	0.4	0
439	PAX5 loss imposes a reversible differentiation block in b-progenitor acute lymphoblastic leukemia. Experimental Hematology, 2014, 42, S46.	0.4	Ο
440	Evolving heterogeneity in acute lymphoblastic leukemia. Experimental Hematology, 2014, 42, S31.	0.4	0
441	Germline exome variation in children with acute lymphoblastic leukemia (ALL): Preliminary Findings. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S177.	0.4	Ο
442	Characterization of new cryptic rearrangements of the erythropoietin receptor in Ph-like acute lymphoblastic leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S175-S176.	0.4	0
443	Targeting of JAK-STAT signaling pathway and BCL-2 family proteins in Ph-like acute lymphoblastic leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S4.	0.4	Ο
444	Acute Leukemias in Children. Archives of Medical Research, 2016, 47, 583-584.	3.3	0
445	Molecular Origin of Childhood Acute Lymphoblastic Leukemia. , 2016, , 157-206.		Ο
446	New Discoveries in Biology and Molecular Markers. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S61-S64.	0.4	0
447	Abstract 2118: Non-coding germline GATA3 variants alter chromatin topology and contribute to pathogenesis of acute lymphoblastic leukemia. , 2021, , .		Ο
448	Abstract 642: Genomes for Kids: Comprehensive DNA and RNA sequencing defining the scope of actionable mutations in pediatric cancer. , 2021, , .		0
449	Poster: ALL-144: Oncogenic Deregulation of BCL11B in Lineage Ambiguous Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S207.	0.4	0
450	Biology and Clinical Relevance of Mannose-Binding Lectin. Drug Design Reviews Online, 2005, 2, 457-465.	0.7	0

#	Article	IF	CITATIONS
451	Molecular Characterization of a Novel Subtype of Pediatric Acute Lymphoblastic Leukemia Blood, 2005, 106, 482-482.	1.4	0
452	Definition of Cytochrome P450 1A2 as a Target Autoantigen in the Hepatitic Variant of Hepatic Chronic Graft-Versus-Host Disease Blood, 2005, 106, 1421-1421.	1.4	0
453	Genome-Wide Single Nucleotide Polymorphism Analysis in Juvenile Myelomonocytic Leukemia Uncovers Long-Range Uniparental Disomy Surrounding the NF1 Locus in Cases Associated with Type 1 Neurofibromatosis but Not in Cases with Mutant RAS or PTPN11 Blood, 2006, 108, 1453-1453.	1.4	0
454	Extended TNF Genotyping Identifies TNF -857T as a Risk Factor for Acute Graft-Versus-Host Disease Following Allogeneic Hematopoietic Stem Cell Transplantation Blood, 2006, 108, 39-39.	1.4	0
455	Risk Factors for Blood Product Usage Following Sibling Allogeneic Haemopoietic Stem Cell Transplantation (allo-HCT) Blood, 2007, 110, 2909-2909.	1.4	0
456	High-Resolution Genome-Wide Profiling of DNA Copy Number Abnormalities and Gene Resequencing in Pediatric Acute Myeloid Leukemia (AML) Blood, 2007, 110, 103-103.	1.4	0
457	Comprehensive Genomic and DNA Methylation Analysis in Twins with ETV6-RUNX1 Acute Lymphoblastic Leukemia. Blood, 2008, 112, 597-597.	1.4	0
458	Deletion of IKZF1 (Ikaros) Predicts Poor Outcome and Impaired Maturation in B-Progenitor Acute Lymphoblastic Leukemia. Blood, 2008, 112, 427-427.	1.4	0
459	Haploinsufficiency of Ebf1 Collaborates with BCR-ABL1 to Decrease the Latency of Acute Lymphoblastic Leukemia Blood, 2008, 112, 3363-3363.	1.4	0
460	Rearrangement of CRLF2 in B-Progenitor and Down Syndrome Associated Acute Lymphoblastic Leukemia Blood, 2009, 114, 182-182.	1.4	0
461	Identification of Novel Recurring Mutations in Relapsed Acute Lymphoblastic Leukemia Blood, 2009, 114, 703-703.	1.4	0
462	Leukemia Prone B-Precursor Population in a p19ARF-/-RAG1-/- Mouse Model Blood, 2009, 114, 3971-3971.	1.4	0
463	Genomic Profiling of Acute Lymphoblastic Leukemia: Insights Into Pathogenesis, Prognosis, and Therapeutic Targets Blood, 2009, 114, SCI-29-SCI-29.	1.4	0
464	Abstract 1188: Cell-of-origin determines genetic selection and defines T-cell acute lymphocytic leukemia sub-types in mouse models. , 2010, , .		0
465	Apports desÂétudes génomiques desÂleucémies aiguës lymphoblastiques. Hematologie, 2010, 16, 4-8.	0.0	0
466	Targeting mTOR Signaling Is An Effective Treatment Strategy for IKAROS and JAK Kinase Mutated Acute Lymphoblastic Leukemia. Blood, 2010, 116, 3251-3251.	1.4	0
467	Evolution of Human BCR-ABL1 lymphoblastic Leukaemia-Initiating Cells Blood, 2010, 116, 1023-1023.	1.4	0
468	Genome-Wide Analysis Reveals Frequent Inactivating Mutations of Acetyltransferase Genes In B-Cell Lymphoma. Blood, 2010, 116, 474-474.	1.4	0

#	Article	IF	CITATIONS
469	Cross-Species Comparison of Acquired Genetic Changes In T Cell Malignancy Blood, 2010, 116, 1192-1192.	1.4	Ο
470	Abstract 4755: Genome wide analysis of hypodiploid acute lymphoblastic leukemia identifies a high frequency of mutations targeting the IKAROS gene family and Ras signaling. , 2011, , .		0
471	Novel Chromosomal Rearrangements and Sequence Mutations in High-Risk Ph-Like Acute Lymphoblastic Leukemia. Blood, 2011, 118, 67-67.	1.4	0
472	Focal 22q11.22 Loss Combined with IKZF1 Alterations Predict Very Poor Outcome in Childhood Acute Lymphoblastic Leukemia. Blood, 2011, 118, 741-741.	1.4	0
473	Lmo2 Overexpression and Arf Loss Induce Myeloid Differentiation in Primitive Thymocytes. Blood, 2011, 118, 47-47.	1.4	0
474	Cooperating Oncogenes and Their Targets in LMO2-Induced T-Cell Leukemia. Blood, 2011, 118, 2458-2458.	1.4	0
475	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0
476	Abstract 2487: CONSERTING: an accurate method for detecting focal and gross somatic copy number alterations in cancer genome by next generation sequencing. , 2012, , .		0
477	Abstract 4873: Comprehensive analysis of 160 whole-genome sequences reveals striking telomere alteration patterns in 9 pediatric cancers. , 2012, , .		Ο
478	Abstract SY25-04: Sequencing the genome of acute lymphoblastic leukemia. , 2012, , .		0
479	Abstract SY08-01: Large-scale screens for cancer genes in the mouse. , 2012, , .		0
480	Expression Profiling for MEIS1 and HOXA9/10 Identifies an Increased Incidence of MLL Rearrangements in T-ALL: A Children's Oncology Group Study Blood, 2012, 120, 2505-2505.	1.4	0
481	Abstract PR01: Global chromatin profiling identifies NSD2 mutations in pediatric acute lymphoblastic leukemia. , 2013, , .		0
482	Abstract A07: Characterizing the specific oncogenic and tumor suppressor roles of H3K27me3 epigenetic modulators in T cell leukemia. , 2013, , .		0
483	Abstract 3083: The genetic landscape of Ph-like acute lymphoblastic leukemia. , 2014, , .		0
484	Abstract 997: Targeting the Jak/Stat signaling pathway is highly effective in xenograft models of early T cell precursor (ETP) acute lymphoblastic leukemia (ALL). , 2014, , .		0
485	Abstract 998: Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukemia (B-ALL): A report from the children's oncology group (COG) - Target - St. Jude Pediatric Cancer Genome Project. , 2014, , .		0
486	Abstract 332: Targeting BCL-2 in hypodiploid acute lymphoblastic leukemia. , 2014, , .		0

#	Article	IF	CITATIONS
487	Abstract 2930: Global chromatin profiling reveals NSD2 mutation in pediatric ALL. , 2014, , .		Ο
488	Abstract IA23: The genomic landscape of acute lymphoblastic leukemia. , 2014, , .		0
489	An Oncogene-Regulated Epigenetic Switch in T Cell Acute Lymphoblastic Leukemia. Blood, 2014, 124, 56-56.	1.4	Ο
490	Cryptic Truncating Rearrangements of the Erythropoietin Receptor in Ph-like Acute Lymphoblastic Leukemia. Blood, 2014, 124, 128-128.	1.4	0
491	Abstract 1269: Role of ribosomal protein, Rpl22 in regulating leukemic transformation. , 2015, , .		0
492	Abstract PR03: Delineating the roles of lysine 27 methylation-associated epigenetic modulators in T cell leukemia , 2015, , .		0
493	Abstract B24: Delineating the roles of lysine 27 methylation-associated epigenetic modulators in T cell leukemia , 2015, , .		0
494	Abstract B04: Investigating the use of tyrosine kinase inhibitors in Ph-like ALL. , 2015, , .		0
495	Abstract A25: Evolving functional heterogeneity in B-acute lymphoblastic leukemia. , 2016, , .		0
496	Abstract B21: Genetic characterization and therapeutic targeting of MYC translocated pediatric T-cell acute lymphoblastic leukemia. Cancer Research, 2016, 76, B21-B21.	0.9	0
497	Abstract 2864: Role of ribosomal protein, Rpl22 in regulation of acute lymphoblastic leukemia. , 2016, , .		Ο
498	Abstract LB-341: Evolving functional heterogeneity in B-acute lymphoblastic leukemia. , 2016, , .		0
499	Abstract LB-180: The genetic landscape of Wilms tumor. , 2016, , .		0
500	Linking Subclonal Genetic Diversity with Functional Heterogeneity Identifies Diagnosis Subclones Destined to Relapse. Blood, 2016, 128, 605-605.	1.4	0
501	Prevalence of RNA Editing Events Affecting Coding Regions in Pediatric Leukemia. Blood, 2016, 128, 3928-3928.	1.4	0
502	PI3K and MEK Inhibition in Hypodiploid Acute Lymphoblastic Leukemia. Blood, 2016, 128, 1635-1635.	1.4	0
503	Clinical Implementation of a Testing Algorithm for the Diagnosis of Ph-like B-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 2915-2915.	1.4	0
504	Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
505	Functional and Genomic Characterization of the Interaction between Acute Lymphoblastic Leukemia Cells and the Microenvironment Identifies Pathways for Therapeutic Intervention. Blood, 2018, 132, 1550-1550.	1.4	0
506	Genetic Heterogeneity and Evolution in Lymphoid Malignancies. Blood, 2018, 132, SCI-34-SCI-34.	1.4	0
507	Multiplex CRISPR/Cas9-Based Genome Editing of Mouse Hematopoietic Stem Cells Recapitulates Acute Erythroid Leukemia and Identifies Therapeutic Targets. Blood, 2018, 132, 5-5.	1.4	0
508	Identification of New Risk Loci and Regulatory Mechanisms Influencing Genetic Susceptibility to Acute Lymphoblastic Leukaemia. Blood, 2019, 134, 650-650.	1.4	0
509	The Influence of the Age of the Bone Marrow Microenvironment on Leukaemia Progression. Blood, 2019, 134, 2748-2748.	1.4	0
510	Abstract 5478: CICERO: An accurate method for detecting complex and diverse driver fusions using cancer transcriptome sequencing (RNA-seq) data. , 2020, , .		0
511	Inhibition of Pre-BCR Signaling Mediates a Metabolic Switch in B-Cell Progenitor Acute Lymphoblastic Leukemia. Blood, 2021, 138, 615-615.	1.4	0
512	Comparison of Current and Enhanced Risk Stratification of 21,199 Children, Adolescents, and Young Adults with Acute Lymphoblastic Leukemia Using Objective Risk Categorization Criteria: A Children's Oncology Group Report. Blood, 2021, 138, 2382-2382.	1.4	0
513	The Impact of Genetic Ancestry on the Biology and Prognosis of Childhood Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3476-3476.	1.4	0
514	Elevated Enhancer-Oncogene Contacts and Higher Oncogene Expression Levels By Recurrent CTCF inactivating Mutations in T Cell Acute Lymphoblastic Leukemia. Blood, 2021, 138, 501-501.	1.4	0
515	Amino Acid Stress Response Genes Promote L-Asparaginase Resistance in Pediatric Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3304-3304.	1.4	0
516	Integrated Genomic Analysis Identifies UBTF Tandem Duplications As a Subtype-Defining Lesion in Pediatric Acute Myeloid Leukemia. Blood, 2021, 138, LBA-4-LBA-4.	1.4	0
517	G3BP2-KIT drives leukemia amenable to kinase inhibition in Ph-like ALL. Blood Advances, 2022, , .	5.2	0