
Diana Soares da Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291245/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Influence of Hyaluronan Density on the Behavior of Breast Cancer Cells with Different CD44 Expression. Advanced Healthcare Materials, 2022, 11, e2101309.	3.9	7
2	Antithrombotic and hemocompatible properties of nanostructured coatings assembled from block copolymers. Journal of Colloid and Interface Science, 2022, 608, 1608-1618.	5.0	5
3	RHAMM expression tunes the response of breast cancer cell lines to hyaluronan. Acta Biomaterialia, 2022, 146, 187-196.	4.1	6
4	Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1939-1954.	1.9	5
5	Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomaterialia, 2021, 119, 114-124.	4.1	30
6	3D hydrogel mimics of the tumor microenvironment: the interplay among hyaluronic acid, stem cells and cancer cells. Biomaterials Science, 2021, 9, 252-260.	2.6	13
7	Multilayer platform to model the bioactivity of hyaluronic acid in gastric cancer. Materials Science and Engineering C, 2021, 119, 111616.	3.8	7
8	Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium. Materials Science and Engineering C, 2021, 126, 112124.	3.8	9
9	Hyaluronic Acid of Low Molecular Weight Triggers the Invasive "Hummingbird―Phenotype on Gastric Cancer Cells. Advanced Biology, 2020, 4, e2000122.	3.0	8
10	Bactericidal nanopatterns generated by block copolymer self-assembly. Acta Biomaterialia, 2020, 112, 174-181.	4.1	13
11	Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chemical Science, 2020, 11, 3737-3744.	3.7	21
12	Bioorthogonal Labeling Reveals Different Expression of Glycans in Mouse Hippocampal Neuron Cultures during Their Development. Molecules, 2020, 25, 795.	1.7	3
13	Bioinspired baroplastic glycosaminoglycan sealants for soft tissues. Acta Biomaterialia, 2019, 87, 108-117.	4.1	16
14	Minimalistic supramolecular proteoglycan mimics by co-assembly of aromatic peptide and carbohydrate amphiphiles. Chemical Science, 2019, 10, 2385-2390.	3.7	60
15	Photocrosslinked acemannan-based 3D matrices for <i>in vitro</i> cell culture. Journal of Materials Chemistry B, 2019, 7, 4184-4190.	2.9	4
16	Absence of Albumin Improves <i>in Vitro</i> Cellular Uptake and Disruption of Poloxamer 407-Based Nanoparticles inside Cancer Cells. Molecular Pharmaceutics, 2018, 15, 527-535.	2.3	12
17	Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. Scientific Reports, 2018, 8, 16058.	1.6	47
18	Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annual Review of Biomedical Engineering, 2017, 19, 1-26.	5.7	227

#	Article	IF	CITATIONS
19	Extracellular matrix-inspired assembly of glycosaminoglycan–collagen fibers. Journal of Materials Chemistry B, 2017, 5, 3103-3106.	2.9	19
20	Design of protein delivery systems by mimicking extracellular mechanisms for protection of growth factors. Acta Biomaterialia, 2017, 63, 283-293.	4.1	21
21	Surfaces Mimicking Glycosaminoglycans Trigger Different Response of Stem Cells via Distinct Fibronectin Adsorption and Reorganization. ACS Applied Materials & Interfaces, 2016, 8, 28428-28436.	4.0	7
22	Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomaterials Science and Engineering, 2016, 2, 1151-1161.	2.6	41
23	Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomaterialia, 2016, 32, 178-189.	4.1	52
24	Adhesion of Adipose-Derived Mesenchymal Stem Cells to Glycosaminoglycan Surfaces with Different Protein Patterns. ACS Applied Materials & Interfaces, 2015, 7, 10034-10043.	4.0	13
25	Controlling Cancer Cell Fate Using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile. Journal of the American Chemical Society, 2015, 137, 576-579.	6.6	260
26	Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomaterialia, 2013, 9, 5216-5225.	4.1	32
27	Interactions between Exogenous FGF-2 and Sulfonic Groups: in Situ Characterization and Impact on the Morphology of Human Adipose-Derived Stem Cells. Langmuir, 2013, 29, 7983-7992.	1.6	26
28	Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii. Planta, 2012, 236, 283-296.	1.6	8
29	GAGs-thiolated chitosan assemblies for chronic wounds treatment: control of enzyme activity and cell attachment. Journal of Materials Chemistry, 2012, 22, 19438.	6.7	27
30	Sulfonic groups induce formation of filopodia in mesenchymal stem cells. Journal of Materials Chemistry, 2012, 22, 7172.	6.7	25
31	The heterologous systems in the study of cardosin B trafficking pathways. Plant Signaling and Behavior, 2011, 6, 895-897.	1.2	7
32	Dissecting cardosin B trafficking pathways in heterologous systems. Planta, 2010, 232, 1517-1530.	1.6	21
33	Characterization of aspartic proteinases in C. cardunculus L. callus tissue for its prospective transformation. Plant Science, 2010, 178, 140-146.	1.7	20
34	Cardosins in postembryonic development of cardoon: towards an elucidation of the biological function of plant aspartic proteinases. Protoplasma, 2008, 232, 203-213.	1.0	29
35	Isolation and characterisation of a cDNA encoding a novel cytosolic ascorbate peroxidase from potato plants (Solanum tuberosum L.). Acta Physiologiae Plantarum, 2006, 28, 41-47.	1.0	3
36	Organ-specific distribution and subcellular localisation of ascorbate peroxidase isoenzymes in potato (Solanum tuberosum L.) plants. Protoplasma, 2005, 226, 223-230.	1.0	5

#	Article	IF	CITATIONS
37	Biomedical potential of fucoidan, a seaweed sulfated polysaccharide: from a anticancer agent to a building block of cell encapsulating systems for regenerative therapies. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0