List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of the mechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees. European Journal of Wood and Wood Products, 2008, 66, 275-280.	2.9	47
2	Wood Properties of Young <i>Acacia mangium</i> Trees Planted in Indonesia. Forest Products Journal, 2012, 62, 102-106.	0.4	30
3	Radial variations of wood properties in Casuarina equisetifolia growing in Bangladesh. Journal of Wood Science, 2009, 55, 139-143.	1.9	28
4	Wood properties of Pericopsis mooniana grown in a plantation in Indonesia. Journal of Wood Science, 2011, 57, 241-246.	1.9	21
5	Effects of radial growth rate on anatomical characteristics and wood properties of 10-year-old <i>Dysoxylum mollissimum</i> trees planted in Bengkulu, Indonesia. Tropics, 2016, 25, 23-31.	0.8	21
6	Variations on growth characteristics and wood properties of three <i>Eucalyptus</i> species planted for pulpwood in Indonesia. Tropics, 2017, 26, 59-69.	0.8	20
7	Stress-wave velocity of trees and dynamic Young's modulus of logs of 4-year-old Eucalyptus camaldulensis trees selected for pulpwood production in Thailand. Journal of Wood Science, 2013, 59, 506-511.	1.9	19
8	Growth characteristics, stress-wave velocity, and Pilodyn penetration of 15 clones of 12-year-old Tectona grandis trees planted at two different sites in Indonesia. Journal of Wood Science, 2013, 59, 249-254.	1.9	18
9	Histological observation of changes in leaf structure during successive micropropagation stages in Aralia elata and Phellodendron amurense. Plant Biotechnology, 2007, 24, 221-226.	1.0	17
10	Wood, Chemical, and Pulp Properties of Woods from Less-Utilized Fast-Growing Tree Species Found in Naturally Regenerated Secondary Forest in South Kalimantan, Indonesia. Journal of Wood Chemistry and Technology, 2016, 36, 250-258.	1.7	17
11	Changes in lignocellulolytic enzyme activity during the degradation of Picea jezoensis wood by the white-rot fungus Porodaedalea pini. International Biodeterioration and Biodegradation, 2016, 110, 108-112.	3.9	17
12	Wood properties related to pulp and paper quality in two <i>Macaranga</i> species naturally regenerated in secondary forests, Central Kalimantan, Indonesia. Tropics, 2016, 25, 107-115.	0.8	16
13	Relationship between Stress-Wave Velocity of Standing Tree and Wood Quality in 27-Year-Old Hinoki (Chamaecyparis obtusa Endl.). Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 576-582.	0.2	15
14	Physical and mechanical properties of wood and their geographic variations in Larix sibirica trees naturally grown in Mongolia. Scientific Reports, 2020, 10, 12936.	3.3	15
15	Variation in anatomical properties and correlations with wood density and compressive strength in <i>Casuarina equisetifolia</i> growing in Bangladesh. Australian Forestry, 2012, 75, 95-99.	0.9	14
16	Properties of Juvenile and Mature Wood and Their Effects on the Bending Properties of Lumber in Pinus taeda Growing in Tochigi, Japan. Forest Products Journal, 2016, 66, 428-432.	0.4	13
17	Inheritance of static bending properties and classification of load-deflection curves in <i>Cryptomeria japonica</i> . Holzforschung, 2021, 75, 105-113.	1.9	13
18	Variation in tree growth characteristics, stress-wave velocity, and Pilodyn penetration of 24-year-old teak (Tectona grandis) trees originating in 21 seed provenances planted in Indonesia. Journal of Wood Science, 2013, 59, 512-516.	1.9	12

#	Article	IF	CITATIONS
19	SNP Genotyping with Target Amplicon Sequencing Using a Multiplexed Primer Panel and Its Application to Genomic Prediction in Japanese Cedar, Cryptomeria japonica (L.f.) D.Don. Forests, 2020, 11, 898.	2.1	12
20	Physical and Mechanical Properties of Woods from Three Native Fast-Growing Species in a Secondary Forest in South Kalimantan, Indonesia. Forest Products Journal, 2014, 64, 48-54.	0.4	11
21	Reddening by UV Irradiation after Smoke-Heating in Sugi (Cryptomeria japonica D. Don) Black Heartwood. Holzforschung, 2001, 55, 347-354.	1.9	10
22	Improvement of Heartwood Color of Black-Colored Sugi (Cryptomeria japonica D. Don) by UV Irradiation after Smoke Heating. Holzforschung, 2000, 54, 294-300.	1.9	9
23	Ozone–dioxane delignification from the cell walls of Japanese cypress (Chamaecyparis obtusa Endl.). Journal of Material Cycles and Waste Management, 2006, 8, 140-144.	3.0	9
24	Enzymatic saccharification of spent wood-meal media made of 5 different tree species after cultivation of edible mushroom Auricularia polytricha. Journal of Wood Science, 2012, 58, 180-183.	1.9	9
25	Anatomical property variation in <i>Acacia auriculiformis</i> growing in Bangladesh. International Wood Products Journal, 2013, 4, 75-80.	1.1	9
26	Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet No.^ ^#8201;8 against canker-rot fungus Inonotus obliquus strain IO-U1. Plant Biotechnology, 2013, 30, 199-205.	1.0	9
27	Growth characteristics and wood properties of 26-year-oldEucalyptus albaplanted in Indonesia. International Wood Products Journal, 2015, 6, 84-88.	1.1	9
28	Wood properties of <i>Larix sibirica</i> naturally grown in Tosontsengel, Mongolia. International Wood Products Journal, 2018, 9, 127-133.	1.1	9
29	Geographic variations of wood properties of <i>Larix sibirica</i> naturally grown in Mongolia. Silva Fennica, 2018, 52, .	1.3	9
30	Radial and between-family variations of the microfibril angle and the relationships with bending properties in Picea jezoensis families. Scandinavian Journal of Forest Research, 2017, 32, 39-44.	1.4	8
31	Variations in anatomical characteristics and predicted paper quality of three Eucalyptus species planted in Indonesia. Wood Science and Technology, 2019, 53, 1409-1423.	3.2	8
32	Predicting the bending properties of <i>Larix sibirica</i> lumber using nondestructive-testing methods. International Wood Products Journal, 2020, 11, 115-121.	1.1	8
33	Bending properties of dimension lumber produced from Siberian larch (Larix sibirica) in Mongolia. Journal of Wood Science, 2020, 66, .	1.9	8
34	The Evaluation of Modulus of Elasticity at an Early Stage of Growth in Sugi (Cryptomeria japonica) Wood Using S2 Microfibril Angle of Latewood Tracheids as a Wood Quality Indicator. Mokuzai Gakkai Shi, 2009, 55, 10-17.	0.2	8
35	Histological studies of shoot regeneration system in hypocotyl-derived callus of Phellodendron amurense Rupr Journal of Forest Research, 2005, 10, 377-384.	1.4	7
36	Changes in the physical and chemical properties of six Japanese softwoods caused by lengthy smoke-heating treatment. Journal of Wood Science, 2005, 51, 161-166.	1.9	7

#	Article	IF	CITATIONS
37	Ozone treatment of spent medium from Auricularia polytricha cultivation for enzymatic saccharification and subsequent ethanol production. Journal of Wood Science, 2013, 59, 522-527.	1.9	7
38	Wood properties and their among-family variations in 10 open-pollinated families of Picea jezoensis. Journal of Wood Science, 2014, 60, 297-304.	1.9	7
39	Among-family variations of solid wood properties in 4-year-old Eucalyptus camaldulensis trees selected for pulpwood production in Thailand. International Wood Products Journal, 2017, 8, 36-40.	1.1	7
40	Wood properties of 7-year-old balsa (<i>Ochroma pyramidale</i>) planted in East Java. International Wood Products Journal, 2017, 8, 227-232.	1.1	7
41	FTIR spectroscopy and color change of wood for assessment and monitoring of softwood degradation by white-rot fungus Porodaedalea pini. AIP Conference Proceedings, 2018, , .	0.4	7
42	The Effects of Radial Growth Rate on Wood Properties and Anatomical Characteristics and an Evaluation of the Xylem Maturation Process in a Tropical Fast-Growing Tree Species, <i>Gmelina arborea</i> . Forest Products Journal, 2017, 67, 297-303.	0.4	7
43	Repeatability of growth characteristics and wood properties for solid wood production from <i>Eucalyptus camaldulensis</i> half-sib families growing in Thailand. Silvae Genetica, 2020, 69, 36-43.	0.8	7
44	Evaluation of xylem maturation and the effects of radial growth rate on anatomical characteristics and wood properties of Azadirachta excelsa planted in Indonesia. Journal of the Indian Academy of Wood Science, 2016, 13, 138-144.	0.9	6
45	Clonal variations and effects of juvenile wood on lumber quality in Japanese larch. Wood Material Science and Engineering, 2022, 17, 72-81.	2.3	6
46	Relationship between starch accumulation and organ development at the different growth stages of callus in Kihada (Phellodendron amurense Rupr.). Plant Biotechnology, 2006, 23, 239-245.	1.0	6
47	Anatomical and histochemical characteristics of Japanese birch (Tohoku) plantlets infected with the Inonotus obliquus IO-U1 strain. Plant Biotechnology, 2008, 25, 183-189.	1.0	6
48	In vitro plantlet regeneration of "dwarf―Indian olive (Elaeocarpus robustus Roxb.): a fruit plant of Bangladesh. Plant Biotechnology Reports, 2009, 3, 259-266.	1.5	5
49	Radial variation of bending property in plantation grownAcacia auriculiformisin Bangladesh. Forest Science and Technology, 2012, 8, 135-138.	0.8	5
50	Reaction wood anatomy and lignin distribution in Gnetum gnemon branches. Journal of Wood Science, 2018, 64, 872-879.	1.9	5
51	The complete mitochondrial genome sequence of the medicinal fungus Inonotus obliquus (Hymenochaetaceae, Basidiomycota). Mitochondrial DNA Part B: Resources, 2019, 4, 3504-3506.	0.4	5
52	Geographical variations of lumber quality of Larix sibirica naturally grown in five different provenances of Mongolia. Journal of Wood Science, 2019, 65, .	1.9	5
53	Preliminary evaluation for quality of dimension lumber in four common softwoods in Mongolia. Journal of Wood Science, 2020, 66, .	1.9	5
54	Utilization potential of naturally regenerated Mongolian <i>Betula platyphylla</i> wood based on growth characteristics and wood properties. Silva Fennica, 2020, 54, .	1.3	5

#	Article	IF	CITATIONS
55	Selection of Eucalyptus camaldulensis Families for Sustainable Pulpwood Production by Means of Anatomical Characteristics. Forests, 2021, 12, 31.	2.1	5
56	Basic wood properties of Borneo ironwood (<i>Eusideroxylon zwageri</i>) planted in Sarawak, Malaysia. Tropics, 2020, 28, 99-103.	0.8	5
57	Wood properties and simulated modulus of elasticity of glulam in three fast-growing tree species grown in community forests in Yogyakarta, Java Island, Indonesia. Tropics, 2020, 29, 89-104.	0.8	5
58	Secondary xylem maturation evaluated by modeling radial variations in anatomical characteristics and wood properties of Shorea macrophylla (De Vr.) Ashton planted in Sarawak, Malaysia. Trees - Structure and Function, 2022, 36, 659-668.	1.9	5
59	Modeling of radial variations in wood properties and comparison of juvenile and mature wood of four common conifers in Mongolia. Holzforschung, 2021, .	1.9	5
60	Comparison of Wood Properties of Hinoki (Chamaecyparis obtusa) Small Diameter Logs Collected from Different Tree Ages and Heights. Mokuzai Gakkai Shi, 2006, 52, 383-388.	0.2	4
61	Stress wave velocity, basic density, and compressive strength in 34-year-old Pinus merkusii planted in Indonesia. Journal of Wood Science, 2011, 57, 526-531.	1.9	4
62	ANATOMY AND LIGNIN DISTRIBUTION OF "COMPRESSION-WOOD-LIKE REACTION WOOD―IN GARDENIA JASMINOIDES. IAWA Journal, 2013, 34, 263-272.	2.7	4
63	Reaction Wood Anatomy in a Vessel-Less Angiosperm Sarcandra Glabra. IAWA Journal, 2014, 35, 116-126.	2.7	4
64	ANATOMY AND CHEMICAL COMPOSITION OF LIRIODENDRON TULIPIFERA STEMS INCLINED AT DIFFERENT ANGLES. IAWA Journal, 2014, 35, 463-475.	2.7	4
65	Diversities of decay resistance and n-hexane-extractive contents in seven half-sib families from plus trees in todomatsu (Abies sachalinensis). Journal of Wood Science, 2015, 61, 192-198.	1.9	4
66	Ozone oxidation pretreatment for enzymatic saccharification of spent culture media after Lentinula edodes cultivation. Journal of Wood Science, 2015, 61, 65-69.	1.9	4
67	Anatomical, chemical, and physical characteristics of tension wood in two tropical fast-growing species, <i>Falcataria moluccana</i> and <i>Acacia auriculiformis</i> . Tropics, 2016, 25, 33-41.	0.8	4
68	Radial variation of wood properties in Neolamarckia cadamba trees from an East Java community forest. Southern Forests, 2018, 80, 351-359.	0.7	4
69	Effects of thinning on anatomical characteristics and wood properties of 12-year-old <i>Eucalyptus camaldulensis</i> trees planted in Thailand. Tropics, 2019, 28, 67-73.	0.8	4
70	Wood Properties of Sanbu-Sugi Cultivar of Sugi (Cryptomeria japonica D. Don) Planted in Chiba Prefecture, Japan. Zairyo/Journal of the Society of Materials Science, Japan, 2014, 63, 635-640.	0.2	4
71	Within-tree and radial variations of wood properties in naturally regenerated trees of <i>Betula platyphylla</i> grown in Nikko, Japan. International Wood Products Journal, 2021, 12, 95-106.	1.1	4
72	Anatomical characteristics and wood properties of unutilized Artocarpus species found in secondary forests regenerated after shifting cultivation in Central Kalimantan, Indonesia. Agroforestry Systems, 2019, 93, 745-753.	2.0	3

#	Article	IF	CITATIONS
73	Clonal Variations of Static Bending Properties and Microfibril Angle of the S2 Layer in Latewood Tracheids in Todomatsu (Abies sachalinensis) Plus-trees Mokuzai Gakkai Shi, 2010, 56, 265-273.	0.2	3
74	Modeling of radial variations of wood properties in naturally regenerated trees of Betula platyphylla grown in Selenge, Mongolia. Journal of Wood Science, 2021, 67, .	1.9	3
75	Determination of Boundary between Core and Outer Wood by Radial Variation Modeling in Tropical Fast-Growing Tree Species. Journal of Sustainable Forestry, 0, , 1-20.	1.4	3
76	Radial variations of broad-sense heritability in wood properties and classification of load–deflection curves in static bending for six half-sib families of Chamaecyparis obtusa. Journal of Wood Science, 2022, 68, .	1.9	3
77	CHARACTERISTICS OF TROCHODENDRON ARALIOIDES TENSION WOOD FORMED AT DIFFERENT INCLINATION ANGLES. IAWA Journal, 2013, 34, 273-284.	2.7	2
78	Anatomical characteristics and wood properties of <i>Melaleuca leucadendron</i> naturally growing in secondary forest in Indonesia. Australian Forestry, 2014, 77, 168-172.	0.9	2
79	Inheritance of basic density and microfibril angle and their variations among full-sib families and their parental clones in Picea glehnii. Holzforschung, 2015, 69, 581-586.	1.9	2
80	Proteome analysis of infection-specific proteins from Japanese birch (Betula platyphylla var. japonica) plantlet No.8 infected with Inonotus obliquus strain IO-U1. Plant Biotechnology, 2013, 30, 83-87.	1.0	2
81	Variance components and parent–offspring cor- relations of growth traits vary among the initial planting spacings in <i>Zelkova serrata</i> . Silvae Genetica, 2019, 68, 45-50.	0.8	2
82	Inheritance of wood color, decay resistance, and polyphenol content of heartwood in full-sib families of Japanese larch (<i>Larix kaempferi</i> (Lamb.) Carr.). Holzforschung, 2022, 76, 348-355.	1.9	2
83	Biodegradation and Composting of Nameko (<i>Pholiota nameko</i> (T. Ito) S. Ito) Cultural Wastes. Shokubutsu Kankyo Kogaku, 2006, 18, 290-298.	0.1	1
84	Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid. Proteomes, 2014, 2, 323-340.	3.5	1
85	Anatomical characteristics in 20-year-old Zelkova serrata trees from eight half-sib families. Journal of Wood Science, 2016, 62, 472-476.	1.9	1
86	Wood and Wood Based Materials. Wood Quality of Sugi (Cryptomeria japonica D. Don) by Smoke-Heating with Increased Far-Infrared Radiation Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 361-367.	0.2	1
87	Variations in Growth Characteristics and Stress-wave Velocities of Zelkova serrata Trees from Eight Half-sib Families Planted in Three Different Initial Spacings. Journal of Forest and Environmental Science, 2015, 31, 235-240.	0.2	1
88	Inheritance of the wood properties of the Japanese red pine (Pinus densiflora Siebold et Zucc.) from the open-pollinated families selected as resistance to the pine wood nematode. Silvae Genetica, 2021, 70, 186-194.	0.8	1
89	Longitudinal and geographic variations in the green moisture content and basic density of bamboo culm in three species naturally grown in Lombok Island, Indonesia. Tropics, 2022, 30, .	0.8	1
90	Estimating available unused dead wood materials for heat generation in Mongolia: how much coal can unused dead wood materials substitute?. Environmental Monitoring and Assessment, 2022, 194, 291.	2.7	1

#	ARTICLE	IF	CITATIONS
91	Properties of Bending, Shearing and Partial Compression of Laminated Lumbers Composed of Sugi and Hinoki Wood with Elements or Laminae of Varying Thickness. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 913-917.	0.2	0
92	Relationships between tree size and reaction wood formation in 23 Japanese angiosperms. Journal of Wood Science, 2017, 63, 307-312.	1.9	0
93	Representative heights for assessing whole-tree values of cell-type proportions in Eucalyptus camaldulensis and E. globulus. Journal of Forestry Research, 2020, 31, 885-900.	3.6	0
94	Tree and Stand Variations of the Stress-Wave Velocity of Stems in Lithocarpus Edulis Trees Growing in Coppiced Stands in Chiba, Japan. Journal of Sustainable Forestry, 2020, , 1-12.	1.4	0
95	Somatic Embryogenesis from Cell Suspension Cultures of Taranoki (Aralia elata). Environmental Control in Biology, 2007, 45, 173-178.	0.7	0
96	Fruit Body Flushing from the Upper Portion of Mycelial Block in Sawdust-Based Cultivation of Lentinula edodes. Environmental Control in Biology, 2009, 47, 47-52.	0.7	0
97	The Effect of Storage Time of Cloud Ear Fungus (Auricularia polytricha) Spent Culture Media Made of Three Indonesian Tree Species on Their Saccharification Rate. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 340-344.	0.2	0
98	Characteristics of bark-stripping of Hinoki cypress (<i>Chamaecyparis</i> obtusa) trees by Japanese black bear (<i>Ursus thibetanus japonicus</i>) and development of wood decay. Journal of the Japanese Society of Revegetation Technology, 2016, 42, 74-79.	0.1	0
99	Preservative treatment of wood by using protein denaturation. MOKUZAI HOZON (Wood Protection), 2018, 44, 301-307.	0.0	0
100	Fungal Glycoside Hydrolases of White-Rot Fungi for Cellulosic Biofuels Production: A Review. Asian Journal of Chemistry, 2020, 32, 1815-1823.	0.3	0
101	Development of wood decay in bark-stripped Sugi (<i>Cryptomeria japonica </i> (Thunb. ex) Tj ETQq1 Journal of the Japanese Society of Revegetation Technology, 2021, 47, 33-38.	1 0.78431 0.1	4 rgBT /Ove o
102	Log characteristics and basic density of four common Mongolian softwoods. International Wood Products Journal, 0, , 1-8.	1.1	0
103	DECAY RESISTANCE AND CHANGES IN CHEMICAL COMPOSITION OF TWO FAST-GROWING TREE SPECIES NEOLAMARKCIA CADAMBA AND OCHROMA PYRAMIDALE. Cellulose Chemistry and Technology, 2022, 56, 91-98.	1.2	0
104	Among-family variations of direct measurement values for chemical and pulp properties in 4-year-old <i>Eucalyptus camaldulensis</i> half-sib families in Thailand. Nordic Pulp and Paper Research Journal, 2022, .	0.7	0
105	Preliminary evaluation of anatomical characteristics of four common Mongolian softwoods. Forest Science and Technology, 0, , 1-11.	0.8	0