Murat Dicleli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3290885/publications.pdf Version: 2024-02-01

MUDAT DICLEU

#	Article	IF	CITATIONS
1	Novel hysteretic damper to improve the distribution of story drifts and energy dissipation along the height of braced frames. Engineering Structures, 2022, 260, 114264.	5.3	2
2	Proposed minimum restoring force requirements for seismic isolated structures. Engineering Structures, 2021, 228, 111549.	5.3	1
3	Effect of the high frequency components of near-fault ground motions on the response of linear and nonlinear SDOF systems: A moving average filtering approach. Soil Dynamics and Earthquake Engineering, 2020, 129, 105922.	3.8	16
4	Damping reduction equation for the equivalent linear analysis of seismic isolated structures subjected to near fault ground motions. Engineering Structures, 2020, 220, 110834.	5.3	0
5	Fatigue in jointless bridge H-piles under axial load and thermal movements. Journal of Constructional Steel Research, 2018, 147, 504-522.	3.9	7
6	Parametric study on the effect of structural and geotechnical properties on the seismic performance of integral bridges. Bulletin of Earthquake Engineering, 2017, 15, 4163-4191.	4.1	3
7	Low-cycle fatigue performance of solid cylindrical steel components subjected to torsion at very large strains. Journal of Constructional Steel Research, 2017, 129, 12-27.	3.9	11
8	Effect of thermal induced flexural strain cycles on the low cycle fatigue performance of integral bridge steel H-piles. Engineering Structures, 2016, 124, 388-404.	5.3	22
9	Systematic development of a new hysteretic damper based on torsional yielding: part II—experimental phase. Earthquake Engineering and Structural Dynamics, 2016, 45, 779-796.	4.4	9
10	Systematic development of a new hysteretic damper based on torsional yielding: part l—design and development. Earthquake Engineering and Structural Dynamics, 2016, 45, 845-867.	4.4	20
11	<i>A_P/V_P</i> specific inelastic displacement ratio for seismic response estimation of structures. Earthquake Engineering and Structural Dynamics, 2015, 44, 1075-1097.	4.4	24
12	Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments. Bulletin of Earthquake Engineering, 2015, 13, 653-677.	4.1	21
13	Effect of dynamic soil–bridge interaction modeling assumptions on the calculated seismic response of integral bridges. Soil Dynamics and Earthquake Engineering, 2014, 66, 42-55.	3.8	33
14	Evaluation of displacement coefficient method for seismically retrofitted buildings with various ductility capacities. Earthquake Engineering and Structural Dynamics, 2014, 43, 1285-1306.	4.4	3
15	Critical Truck Loading Pattern to Maximize Live Load Effects in Skewed Integral Bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2014, 24, 265-274.	0.8	5
16	Comparative Study on the Effect of Number of Girders on Live Load Distribution in Integral Abutment and Simply Supported Bridge Girders. Advances in Structural Engineering, 2013, 16, 1011-1034.	2.4	9
17	Low cycle fatigue effects in integral bridge steel H-piles under seismic displacement reversals. Bridge Structures, 2013, 9, 185-190.	0.4	1
18	Effect of lead core heating on the seismic performance of bridges isolated with LRB in nearâ€fault zones. Earthquake Engineering and Structural Dynamics, 2012, 41, 1989-2007.	4.4	25

Murat Dicleli

#	Article	IF	CITATIONS
19	Parametric analysis of optimum isolator properties for bridges susceptible to near-fault ground motions. Engineering Structures, 2012, 40, 276-287.	5.3	32
20	Development of a new rubber seismic isolator: †Ball Rubber Bearing (BRB)'. Earthquake Engineering and Structural Dynamics, 2011, 40, 1337-1352.	4.4	25
21	Optimum characteristic properties of isolators with bilinear force–displacement hysteresis for seismic protection of bridges built on various site soils. Soil Dynamics and Earthquake Engineering, 2011, 31, 982-995.	3.8	16
22	Effect of Foundation Soil Stiffness on the Seismic Performance of Integral Bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2011, 21, 162-168.	0.8	8
23	Effect of soil–bridge interaction on the magnitude of internal forces in integral abutment bridge components due to live load effects. Engineering Structures, 2010, 32, 129-145.	5.3	16
24	Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link. Engineering Structures, 2010, 32, 2995-3010.	5.3	57
25	Effect of superstructure-abutment continuity on live load distribution in integral abutment bridge girders. Structural Engineering and Mechanics, 2010, 34, 635-662.	1.0	8
26	Live Load Distribution Formulas for Single-Span Prestressed Concrete Integral Abutment Bridge Girders. Journal of Bridge Engineering, 2009, 14, 472-486.	2.9	37
27	Live load distribution equations for integral bridge substructures. Engineering Structures, 2009, 31, 1250-1264.	5.3	14
28	Investigation of the Applicability of AASHTO LRFD Live Load Distribution Equations for Integral Bridge Substructures. Advances in Structural Engineering, 2009, 12, 559-578.	2.4	5
29	Performance of seismicâ€isolated bridges with and without elasticâ€gap devices in nearâ€fault zones. Earthquake Engineering and Structural Dynamics, 2008, 37, 935-954.	4.4	17
30	Effect of Soil and Substructure Properties on Live-Load Distribution in Integral Abutment Bridges. Journal of Bridge Engineering, 2008, 13, 527-539.	2.9	20
31	Seismic Performance of a Special Type of Single-Story Eccentrically Braced Steel Frame. Advances in Structural Engineering, 2008, 11, 35-51.	2.4	4
32	Efficient Energy Dissipating Steel-Braced Frame to Resist Seismic Loads. Journal of Structural Engineering, 2007, 133, 969-981.	3.4	8
33	Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames. Earthquake Engineering and Structural Dynamics, 2007, 36, 927-948.	4.4	24
34	Equivalent linear analysis of seismic-isolated bridges subjected to near-fault ground motions with forward rupture directivity effect. Engineering Structures, 2007, 29, 21-32.	5.3	72
35	Supplemental elastic stiffness to reduce isolator displacements for seismic-isolated bridges in near-fault zones. Engineering Structures, 2007, 29, 763-775.	5.3	40
36	Comprehensive evaluation of equivalent linear analysis method for seismic-isolated structures represented by sdof systems. Engineering Structures, 2007, 29, 1653-1663.	5.3	55

MURAT DICLELI

#	Article	IF	CITATIONS
37	Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics. Journal of Constructional Steel Research, 2007, 63, 1102-1115.	3.9	33
38	Simulation of inelastic cyclic buckling behavior of steel box sections. Computers and Structures, 2007, 85, 446-457.	4.4	17
39	Effect of Modifying Bearing Fixities on the Seismic Response of Short- to Medium-Length Bridges with Heavy Substructures. Earthquake Spectra, 2006, 22, 65-84.	3.1	5
40	Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges. Earthquake Engineering and Structural Dynamics, 2006, 35, 233-250.	4.4	87
41	Improved Effective Damping Equation for Equivalent Linear Analysis of Seismic-Isolated Bridges. Earthquake Spectra, 2006, 22, 29-46.	3.1	4
42	Performance of Seismic-Isolated Bridges in Relation to Near-Fault Ground-Motion and Isolator Characteristics. Earthquake Spectra, 2006, 22, 887-907.	3.1	32
43	Analytical Prediction of Thermal Displacement Capacity of Integral Bridges Built on Sand. Advances in Structural Engineering, 2005, 8, 15-30.	2.4	5
44	Integral Abutment-Backfill Behavior on Sand Soil—Pushover Analysis Approach. Journal of Bridge Engineering, 2005, 10, 354-364.	2.9	49
45	PREDICTION OF DAMAGE IN R/C SHEAR PANELS SUBJECTED TO REVERSED CYCLIC LOADING. Journal of Earthquake Engineering, 2005, 9, 41-66.	2.5	2
46	Analytical formulation of maximum length limits of integral bridges on cohesive soils. Canadian Journal of Civil Engineering, 2005, 32, 726-738.	1.3	6
47	SEISMIC RETROFITTING OF BRIDGES BY RESPONSE MODIFICATION TECHNIQUES BASED ON ALTERING BEARING FIXITIES. Journal of Earthquake Engineering, 2005, 9, 483-495.	2.5	2
48	Static Soil–Structure Interaction Effects in Seismic-Isolated Bridges. Practice Periodical on Structural Design and Construction, 2005, 10, 22-33.	1.3	23
49	Efficiency of Seismic Isolation for Seismic Retrofitting of Heavy Substructured Bridges. Journal of Bridge Engineering, 2005, 10, 429-441.	2.9	13
50	Estimation of Length Limits for Integral Bridges Built on Clay. Journal of Bridge Engineering, 2004, 9, 572-581.	2.9	22
51	Predicting the shear strength of reinforced concrete beams using artificial neural networks. Engineering Structures, 2004, 26, 781-799.	5.3	171
52	Performance of abutment–backfill system under thermal variations in integral bridges built on clay. Engineering Structures, 2004, 26, 949-962.	5.3	22
53	Effect of cyclic thermal loading on the performance of steel H-piles in integral bridges with stub-abutments. Journal of Constructional Steel Research, 2004, 60, 161-182.	3.9	46
54	Nonlinear Analysis of R/C Low-Rise Shear Walls. Advances in Structural Engineering, 2004, 7, 345-361.	2.4	2

Murat Dicleli

#	Article	IF	CITATIONS
55	Seismic retrofitting of highway bridges in Illinois using friction pendulum seismic isolation bearings and modeling procedures. Engineering Structures, 2003, 25, 1139-1156.	5.3	47
56	Maximum length of integral bridges supported on steel H-piles driven in sand. Engineering Structures, 2003, 25, 1491-1504.	5.3	49
57	Assessment of Performance of Seismic Isolation System of Bolu Viaduct. Journal of Bridge Engineering, 2003, 8, 182-190.	2.9	54
58	Seismic Design of Lifeline Bridge using Hybrid Seismic Isolation. Journal of Bridge Engineering, 2002, 7, 94-103.	2.9	32
59	Simplified seismic analysis of a class of regular steel bridges. Engineering Structures, 2002, 24, 1409-1422.	5.3	4
60	A rational design approach for prestressed-concrete-girder integral bridges. Engineering Structures, 2000, 22, 230-245.	5.3	33
61	Simplified Model for Computer-Aided Analysis of Integral Bridges. Journal of Bridge Engineering, 2000, 5, 240-248.	2.9	25
62	Computer-aided optimum design of steel tubular telescopic pole structures. Computers and Structures, 1997, 62, 961-973.	4.4	10
63	Quantitative Approach to Rapid Seismic Evaluation of Slab-on-Girder Steel Highway Bridges. Journal of Structural Engineering, 1996, 122, 1160-1168.	3.4	11
64	An energy approach to sliding of single-span simply supported slab-on-girder steel highway bridges with damaged bearings. Earthquake Engineering and Structural Dynamics, 1995, 24, 395-409.	4.4	24
65	Seismic performance of multispan simply supported slab-on-girder steel highway bridges. Engineering Structures, 1995, 17, 4-14.	5.3	28
66	Fatigue-Based Methodology for Managing Impact of Heavy-Permit Trucks on Steel Highway Bridges. Journal of Structural Engineering, 1995, 121, 1651-1659.	3.4	8
67	Seismic Performance of Single-Span Simply Supported and Continuous Slab-on-Girder Steel Highway Bridges. Journal of Structural Engineering, 1995, 121, 1497-1506.	3.4	14