Andrew S Macdougall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3290809/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	ARE INVASIVE SPECIES THE DRIVERS OR PASSENGERS OF CHANGE IN DEGRADED ECOSYSTEMS?. Ecology, 2005, 86, 42-55.	3.2	923
2	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
3	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	6.4	612
4	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
5	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
6	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
7	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
8	Plant invasions and the niche. Journal of Ecology, 2009, 97, 609-615.	4.0	379
9	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355
10	Food web rewiring in a changing world. Nature Ecology and Evolution, 2019, 3, 345-354.	7.8	200
11	Consequences of plant–soil feedbacks in invasion. Journal of Ecology, 2013, 101, 298-308.	4.0	174
12	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
13	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
14	Defining Conservation Strategies with Historical Perspectives: a Case Study from a Degraded Oak Grassland Ecosystem. Conservation Biology, 2004, 18, 455-465.	4.7	91
15	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	6.4	88
16	A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecology and Evolution, 2017, 1, 118.	7.8	82
17	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	12.8	75
18	Nutrients and defoliation increase soil carbon inputs in grassland. Ecology, 2013, 94, 106-116.	3.2	74

ANDREW S MACDOUGALL

#	Article	IF	CITATIONS
19	Does the Type of Disturbance Matter When Restoring Disturbance-Dependent Grasslands?. Restoration Ecology, 2007, 15, 263-272.	2.9	70
20	Climatic variability alters the outcome of longâ€ŧerm community assembly. Journal of Ecology, 2008, 96, 346-354.	4.0	70
21	Relative importance of suppression-based and tolerance-based competition in an invaded oak savanna. Journal of Ecology, 2004, 92, 422-434.	4.0	68
22	Dispersal Limitation and Environmental Structure Interact to Restrict the Occupation of Optimal Habitat. American Naturalist, 2010, 175, 675-686.	2.1	59
23	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	3.6	55
24	Spatial Variability in Plant Predation Determines the Strength of Stochastic Community Assembly. American Naturalist, 2013, 182, 169-179.	2.1	51
25	Early emergence and resource availability can competitively favour natives over a functionally similar invader. Oecologia, 2010, 163, 775-784.	2.0	43
26	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	9.5	43
27	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	3.2	42
28	HERBIVORY LIMITS RECRUITMENT IN AN OLD-FIELD SEED ADDITION EXPERIMENT. Ecology, 2007, 88, 1105-1111	. 3.2	41
29	Climate and local environment structure asynchrony and the stability of primary production in grasslands. Global Ecology and Biogeography, 2020, 29, 1177-1188.	5.8	41
30	Land management trumps the effects of climate change and elevated <scp>CO</scp> ₂ on grassland functioning. Journal of Ecology, 2014, 102, 896-904.	4.0	40
31	RESPONSES OF DIVERSITY AND INVASIBILITY TO BURNING IN A NORTHERN OAK SAVANNA. Ecology, 2005, 86, 3354-3363.	3.2	35
32	DISPERSAL, COMPETITION, AND SHIFTING PATTERNS OF DIVERSITY IN A DEGRADED OAK SAVANNA. Ecology, 2006, 87, 1831-1843.	3.2	34
33	Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150273.	4.0	34
34	Consumerâ€based limitations drive oak recruitment failure. Ecology, 2010, 91, 2092-2099.	3.2	33
35	Trophic island biogeography drives spatial divergence of community establishment. Ecology, 2014, 95, 2870-2878.	3.2	33
36	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	5.8	32

ANDREW S MACDOUGALL

#	Article	IF	CITATIONS
37	Landscape modification and nutrientâ€driven instability at a distance. Ecology Letters, 2021, 24, 398-414.	6.4	30
38	The invasive grass Agropyron cristatum doubles belowground productivity but not soil carbon. Ecology, 2011, 92, 657-664.	3.2	29
39	Weak conspecific feedbacks and exotic dominance in a species-rich savannah. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2939-2945.	2.6	29
40	Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?. Ecology Letters, 2021, 24, 2713-2725.	6.4	28
41	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	2.5	27
42	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	9.5	25
43	The Neolithic Plant Invasion Hypothesis: the role of preadaptation and disturbance in grassland invasion. New Phytologist, 2018, 220, 94-103.	7.3	24
44	Inversion of plant dominance–diversity relationships along a latitudinal stress gradient. Ecology, 2012, 93, 1431-1438.	3.2	23
45	A continentâ€wide study reveals clear relationships between regional abiotic conditions and postâ€dispersal seed predation. Journal of Biogeography, 2015, 42, 662-670.	3.0	23
46	Fineâ€scale spatial heterogeneity and incoming seed diversity additively determine plant establishment. Journal of Ecology, 2012, 100, 939-949.	4.0	22
47	Native and non-native ruderals experience similar plant–soil feedbacks and neighbor effects in a system where they coexist. Oecologia, 2015, 179, 843-852.	2.0	21
48	Different Root and Shoot Responses to Mowing and Fertility in Native and Invaded Grassland. Rangeland Ecology and Management, 2014, 67, 39-45.	2.3	20
49	Globally, plantâ€soil feedbacks are weak predictors of plant abundance. Ecology and Evolution, 2021, 11, 1756-1768.	1.9	19
50	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	9.5	18
51	Soil nutrients increase longâ€ŧerm soil carbon gains threefold on retired farmland. Global Change Biology, 2021, 27, 4909-4920.	9.5	17
52	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	6.4	17
53	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
54	Homogenization of freshwater lakes: Recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Global Change Biology, 2019, 25, 4222-4233.	9.5	16

ANDREW S MACDOUGALL

#	Article	IF	CITATIONS
55	Spatially Heterogeneous Perturbations Homogenize the Regulation of Insect Herbivores. American Naturalist, 2015, 186, 623-633.	2.1	15
56	The efficacy of protected areas and private land for plant conservation in a fragmented landscape. Landscape Ecology, 2017, 32, 871-882.	4.2	15
57	Decreased root heterogeneity and increased root length following grassland invasion. Functional Ecology, 2014, 28, 1266-1273.	3.6	14
58	Context-dependent interactions and the regulation of species richness in freshwater fish. Nature Communications, 2018, 9, 973.	12.8	14
59	Restored native prairie supports abundant and speciesâ€rich native bee communities on conventional farms. Restoration Ecology, 2019, 27, 1291-1299.	2.9	12
60	Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial $\hat{l}^2 \hat{a} \in \mathbf{d}$ iversity. Ecosphere, 2021, 12, e03644.	2.2	12
61	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	4.0	12
62	Dominant native and nonâ€native graminoids differ in key leaf traits irrespective of nutrient availability. Global Ecology and Biogeography, 2020, 29, 1126-1138.	5.8	11
63	Field-based effects of allelopathy in invaded tallgrass prairie. Botany, 2011, 89, 227-234.	1.0	10
64	Selective plant foraging and the topâ€down suppression of native diversity in a restored prairie. Journal of Applied Ecology, 2017, 54, 1496-1504.	4.0	9
65	Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries. Global Change Biology, 2021, 27, 5070-5083.	9.5	9
66	Nonâ€interacting impacts of fertilization and habitat area on plant diversity via contrasting assembly mechanisms. Diversity and Distributions, 2018, 24, 509-520.	4.1	7
67	Granivory reduces biomass and lignin concentrations of plant tissue during grassland assembly. Basic and Applied Ecology, 2014, 15, 142-150.	2.7	6
68	Rapid Root Decomposition Decouples Root Length from Increased Soil C Following Grassland Invasion. Ecosystems, 2015, 18, 1307-1318.	3.4	6
69	Habitat Loss and Herbivore Attack in Recruiting Oaks. American Midland Naturalist, 2015, 173, 218-228.	0.4	6
70	Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in globally-distributed grasslands. Biogeochemistry, 2022, 159, 353-370.	3.5	5
71	When anthropogenicâ€related disturbances overwhelm demographic persistence mechanisms. Journal of Ecology, 2015, 103, 761-768	4.0	4
72	Restored marginal farmland benefits arthropod diversity at multiple scales. Restoration Ecology, 0, , e13485.	2.9	4

5

#	Article	IF	CITATIONS
73	Prospects for soil carbon storage on recently retired marginal farmland. Science of the Total Environment, 2022, 806, 150738.	8.0	3
74	Global Grassland Diazotrophic Communities Are Structured by Combined Abiotic, Biotic, and Spatial Distance Factors but Resilient to Fertilization. Frontiers in Microbiology, 2022, 13, 821030.	3.5	1