
Matteo Tiecco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3289631/publications.pdf Version: 2024-02-01

Μλττέο Τιέςςο

#	Article	IF	CITATIONS
1	Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. Journal of Molecular Liquids, 2019, 291, 111301.	2.3	194
2	Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: characterization of their properties and their toxicity. RSC Advances, 2014, 4, 55990-56002.	1.7	109
3	A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chemistry, 2018, 245, 578-585.	4.2	91
4	Room temperature deep eutectic solvents of (1S)-(+)-10-camphorsulfonic acid and sulfobetaines: hydrogen bond-based mixtures with low ionicity and structure-dependent toxicity. RSC Advances, 2015, 5, 31772-31786.	1.7	62
5	Role of the hydrogen bond donor component for a proper development of novel hydrophobic deep eutectic solvents. Journal of Molecular Liquids, 2019, 281, 423-430.	2.3	49
6	Surfactant-Based Photorheological Fluids: Effect of the Surfactant Structure. Langmuir, 2009, 25, 5467-5475.	1.6	45
7	Carbon–carbon bond formation in acid deep eutectic solvent: chalcones synthesis via Claisen–Schmidt reaction. RSC Advances, 2016, 6, 43740-43747.	1.7	43
8	Novel low viscous, green and amphiphilic N -oxides/phenylacetic acid based Deep Eutectic Solvents. Journal of Molecular Liquids, 2017, 240, 233-239.	2.3	43
9	FTIR Metabolomic Fingerprint Reveals Different Modes of Action Exerted by Structural Variants of N-Alkyltropinium Bromide Surfactants on Escherichia coli and Listeria innocua Cells. PLoS ONE, 2015, 10, e0115275.	1.1	43
10	Extraction of astaxanthin from Haematococcus pluvialis with hydrophobic deep eutectic solvents based on oleic acid. Food Chemistry, 2022, 379, 132156.	4.2	40
11	Use of Innovative (Micro)Extraction Techniques to Characterise <scp><i>Harpagophytum procumbens</i></scp> Root and its Commercial Food Supplements. Phytochemical Analysis, 2018, 29, 233-241.	1.2	38
12	Deep Eutectic Solvents formed by chiral components as chiral reaction media and studies of their structural properties. Journal of Molecular Liquids, 2018, 262, 285-294.	2.3	36
13	Improved strain sensing properties of cement-based sensors through enhanced carbon nanotube dispersion. Cement and Concrete Composites, 2021, 115, 103842.	4.6	36
14	Asymmetric Organocatalysis in Deep Eutectic Solvents. European Journal of Organic Chemistry, 2021, 2021, 4065-4071.	1.2	33
15	Biocidal and inhibitory activity screening of de novo synthesized surfactants against two eukaryotic and two prokaryotic microbial species. Colloids and Surfaces B: Biointerfaces, 2013, 111, 407-417.	2.5	30
16	Eco-Friendly 1,3-Dipolar Cycloaddition Reactions on Graphene Quantum Dots in Natural Deep Eutectic Solvent. Nanomaterials, 2020, 10, 2549.	1.9	30
17	Physical absorption of CO2 in betaine/carboxylic acid-based Natural Deep Eutectic Solvents. Journal of Molecular Liquids, 2020, 315, 113708.	2.3	30
18	FTIR analysis of the metabolomic stress response induced by N-alkyltropinium bromide surfactants in the yeasts Saccharomyces cerevisiae and Candida albicans. Colloids and Surfaces B: Biointerfaces, 2014, 116, 761-771.	2.5	29

ΜΑΤΤΕΟ ΤΙΕϹϹΟ

#	Article	IF	CITATIONS
19	Novel zwitterionic Natural Deep Eutectic Solvents as environmentally friendly media for spontaneous self-assembly of gold nanoparticles. Journal of Molecular Liquids, 2018, 268, 371-375.	2.3	28
20	Baseâ€Free Copperâ€Catalyzed Azideâ€Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media**. European Journal of Organic Chemistry, 2021, 2021, 4777-4789.	1.2	25
21	Launching deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs), in combination with different harmless co-solvents, for the preparation of more sustainable membranes. Journal of Membrane Science, 2022, 649, 120387.	4.1	25
22	Liquid Phase and Microwave-Assisted Extractions for Multicomponent Phenolic Pattern Determination of Five Romanian Galium Species Coupled with Bioassays. Molecules, 2019, 24, 1226.	1.7	24
23	<i>>p</i> â€TSAâ€Based DESs as "Active Green Solvents―for Microwave Enhanced Cyclization of 2â€Alkynylâ€(hetero)â€arylcarboxylates: an Alternative Access to 6â€Substituted 3,4â€Fused 2â€Pyranones. European Journal of Organic Chemistry, 2019, 2019, 1904-1914.	1.2	24
24	Assessment of the organocatalytic activity of chiral l-Proline-based Deep Eutectic Solvents based on their structural features. Journal of Molecular Liquids, 2020, 313, 113573.	2.3	24
25	Convenient Esterification of Carboxylic Acids by S _N 2 Reaction Promoted by a Protic Ionic-Liquid System Formed in Situ in Solvent-Free Conditions. Synthetic Communications, 2014, 44, 3248-3256.	1.1	22
26	Accelerated decarboxylation of 6-nitrobenzisoxazole-3-carboxylate in imidazolium-based ionic liquids and surfactant ionic liquids. Journal of Colloid and Interface Science, 2010, 348, 137-145.	5.0	20
27	Pdâ€Promoted Homocoupling Reactions of Unsaturated Silanes in Aqueous Micelles. European Journal of Organic Chemistry, 2010, 2010, 2275-2279.	1.2	19
28	Interaction between DNA and Cationic Amphiphiles: A Multi-Technique Study. Langmuir, 2010, 26, 7885-7892.	1.6	19
29	A novel FTIR-based approach to evaluate the interactions between lignocellulosic inhibitory compounds and their effect on yeast metabolism. RSC Advances, 2016, 6, 47981-47989.	1.7	18
30	lonic Conductivity as a Tool To Study Biocidal Activity of Sulfobetaine Micelles against <i>Saccharomyces cerevisiae</i> Model Cells. Langmuir, 2016, 32, 1101-1110.	1.6	18
31	Effective and Selective Extraction of Quercetin from Onion (Allium cepa L.) Skin Waste Using Water Dilutions of Acid-Based Deep Eutectic Solvents. Materials, 2021, 14, 6465.	1.3	13
32	Effect of Surfactant Structure on the Superactivity of <i>Candida rugosa</i> Lipase. Langmuir, 2018, 34, 11510-11517.	1.6	12
33	Synthesis of Novel 5′-Uridine-Head Amphiphiles as Model for DNA Molecular Recognition. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 911-923.	0.4	11
34	Advantageous Use of Ionic Liquids for the Synthesis of Pharmaceutically Relevant Quinolones. European Journal of Organic Chemistry, 2018, 2018, 2977-2983.	1.2	10
35	Antioxidant Power on Dermal Cells by Textiles Dyed with an Onion (Allium cepa L.) Skin Extract. Antioxidants, 2021, 10, 1655.	2.2	10
36	Structure effects of amphiphilic and non-amphiphilic quaternary ammonium salts on photodegradation of Alizarin Red-S catalyzed by titanium dioxide. RSC Advances, 2017, 7, 361-368.	1.7	9

ΜΑΤΤΕΟ ΤΙΕϹϹΟ

#	Article	IF	CITATIONS
37	Influence of surfactants in improving degradation of polluting dyes photocatalyzed by TiO2 in aqueous dispersion. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113342.	2.0	9
38	Theoretical and experimental evidence for the use of natural deep eutectic solvents to increase the solubility and extractability of curcumin. Journal of Molecular Liquids, 2022, 359, 119149.	2.3	9
39	A novel, rapid and automated conductometric method to evaluate surfactant–cells interactions by means of critical micellar concentration analysis. Chemico-Biological Interactions, 2014, 218, 20-27.	1.7	8
40	Role of anionic micelles in self-assembling of fluorescent acridinium-based chemosensors for the detection of mercury (II) ions. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345, 74-79.	2.0	8
41	Application of the "inverted chirality columns approach―for the monitoring of asymmetric synthesis protocols. Talanta, 2019, 203, 147-152.	2.9	8
42	Use of a Zwitterionic Surfactant to Improve the Biofunctional Properties of Wool Dyed with an Onion (Allium cepa L.) Skin Extract. Antioxidants, 2020, 9, 1055.	2.2	7
43	Probing the structural features and the micro-heterogeneity of various deep eutectic solvents and their water dilutions by the photophysical behaviour of two fluorophores. Journal of Molecular Liquids, 2021, 331, 115718.	2.3	7
44	Acid-base responsive probes for mercury(II) ions in aqueous solution. Microchemical Journal, 2018, 141, 127-134.	2.3	6
45	Low-cost temperature transition mixtures (TTM) based on ethylene glycol/potassium hydroxide as reversible CO2 sorbents. Journal of Molecular Liquids, 2021, 340, 117180.	2.3	6
46	Silverâ€catalysed A ³ â€coupling reactions in phenylacetic acid/alkylamine <i>N</i> â€oxide eutectic mixture under dielectric heating: An alternative approach to propargylamines. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
47	Highly recyclable surfactant-based supramolecular eutectogels for iodine removal. Journal of Molecular Liquids, 2022, 362, 119712.	2.3	5
48	α-Chymotrypsin superactivity in quaternary ammonium salt solution: kinetic and computational studies. RSC Advances, 2016, 6, 46202-46211.	1.7	4
49	Turn-off and -on fluorescence switching of a self-assembled sensor for mercury(II) induced by anionic micelles. Dyes and Pigments, 2020, 173, 107959.	2.0	4
50	Fluorescent signal transduction in a self-assembled Hg2+ chemosensor tuned by various interactions in micellar aqueous environment. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112276.	2.0	4
51	Exploring the acidic catalytic role of differently structured deep eutectic solvents in the aza-Michael addition of amines to 2-vinylpiridine. Monatshefte Für Chemie, 2020, 151, 1387-1394.	0.9	2