
Xiaoning Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3289483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19054.	0.8	27
2	Direct Radiative Effect (DRE) of Dust Aerosols on West African and East Asian Monsoon: The Role of Oceanâ€Atmosphere Interactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
3	Differing responses of precipitation in Northern Hemisphere mid-latitudes to increased black carbon aerosols and carbon dioxide. Environmental Research, 2022, 210, 112938.	3.7	1
4	Fast and Slow Responses of the Indian Summer Monsoon to the Direct Radiative Effect of West Asian Dust Aerosols. Frontiers in Environmental Science, 2022, 10, .	1.5	0
5	Attribution of Last Glacial Maximum precipitation change in Northern Hemisphere monsoon and arid regions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 599, 111053.	1.0	1
6	A teleconnection between sea surface temperature in the central and eastern Pacific and wintertime haze variations in southern China. Theoretical and Applied Climatology, 2021, 143, 349-359.	1.3	3
7	Distinct effects of winter monsoon and westerly circulation on dust aerosol transport over East Asia. Theoretical and Applied Climatology, 2021, 144, 1031-1042.	1.3	11
8	Seasonal Variation of the Westerly Jet over Asia in the Last Glacial Maximum: Role of the Tibetan Plateau Heating. Journal of Climate, 2021, 34, 2723-2740.	1.2	10
9	Distinct Holocene precipitation trends over arid Central Asia and linkages to westerlies and Asian monsoon. Quaternary Science Reviews, 2021, 266, 107055.	1.4	16
10	Understanding Cloud Droplet Spectral Dispersion Effect Using Empirical and Semiâ€Analytical Parameterizations in NCAR CAM5.3. Earth and Space Science, 2020, 7, e2020EA001276.	1.1	9
11	Effects of dust-in-snow forcing over the Tibetan Plateau on the East Asian dust cycle during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 542, 109442.	1.0	4
12	Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases. Atmospheric Chemistry and Physics, 2020, 20, 11823-11839.	1.9	15
13	Modulation of springtime surface sensible heating over the Tibetan Plateau on the interannual variability of East Asian dust cycle. Atmospheric Chemistry and Physics, 2020, 20, 11143-11159.	1.9	3
14	Radiative Effect of Mineral Dust on East Asian Summer Monsoon During the Last Glacial Maximum: Role of Snowâ€Albedo Feedback. Geophysical Research Letters, 2019, 46, 10901-10909.	1.5	19
15	Effect of marginal topography around the Tibetan Plateau on the evolution of central Asian arid climate: Yunnan–Guizhou and Mongolian Plateaux as examples. Climate Dynamics, 2019, 53, 4433-4445.	1.7	18
16	Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum. Atmosphere, 2019, 10, 146.	1.0	3
17	Snow-darkening versus direct radiative effects of mineral dust aerosol on the Indian summer monsoon onset: role of temperature change over dust sources. Atmospheric Chemistry and Physics, 2019, 19, 1605-1622.	1.9	24
18	Impact of East Asian summer monsoon circulation on the regional aerosol distribution in observations and models. Theoretical and Applied Climatology, 2018, 133, 377-384.	1.3	6

XIAONING XIE

#	Article	IF	CITATIONS
19	Radiative feedbacks of dust in snow over eastern Asia in CAM4-BAM. Atmospheric Chemistry and Physics, 2018, 18, 12683-12698.	1.9	27
20	Modeling East Asian Dust and Its Radiative Feedbacks in CAM4â€BAM. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1079-1096.	1.2	33
21	Role of microphysical parameterizations with droplet relative dispersion in IAP AGCM 4.1. Advances in Atmospheric Sciences, 2018, 35, 248-259.	1.9	4
22	Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects. Atmospheric Chemistry and Physics, 2017, 17, 5877-5892.	1.9	24
23	Effects of Aerosols on Radiative Forcing and Climate Over East Asia With Different SO2 Emissions. Atmosphere, 2016, 7, 99.	1.0	12
24	Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multidecadal strong and weak monsoon stages. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7026-7040.	1.2	29
25	On the Robustness of the Weakening Effect of Anthropogenic Aerosols on the East Asian Summer Monsoon with Multimodel Results. Advances in Meteorology, 2015, 2015, 1-8.	0.6	12
26	Aerosol-cloud-precipitation interactions in WRF model: Sensitivity to autoconversion parameterization. Journal of Meteorological Research, 2015, 29, 72-81.	0.9	17
27	Analytical studies of the cloud droplet spectral dispersion influence on the first indirect aerosol effect. Advances in Atmospheric Sciences, 2013, 30, 1313-1319.	1.9	11
28	Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems. Journal of Geophysical Research, 2011, 116, .	3.3	14
29	A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theoretical and Applied Climatology, 2011, 106, 343-354.	1.3	61
30	Analytical threeâ€moment autoconversion parameterization based on generalized gamma distribution. Journal of Geophysical Research, 2009, 114, .	3.3	19