Giovanni Spagnoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3289184/publications.pdf Version: 2024-02-01

CIOVANNI SPACNOLI

#	Article	IF	CITATIONS
1	Predicting compaction properties of soils at different compaction efforts. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2023, 176, 146-156.	0.9	2
2	Statistics of Atterberg limit values of some pure kaolinitic clays. Geomechanics and Geoengineering, 2023, 18, 105-120.	0.9	1
3	The effect of curing conditions on the hydromechanical properties of a metakaolin-based soilcrete. Geotechnique, 2022, 72, 455-469.	2.2	17
4	A General Overview on the Correlation of Compression Index of Clays with Some Geotechnical Index Properties. Geotechnical and Geological Engineering, 2022, 40, 311-324.	0.8	6
5	Exploring the mechanical response of low-carbon soil improvement mixtures. Canadian Geotechnical Journal, 2022, 59, 726-742.	1.4	9
6	Creep behaviour of two-component grout and interaction with segmental lining in tunnelling. Tunnelling and Underground Space Technology, 2022, 119, 104216.	3.0	16
7	Improving the Hydrodynamic Performance of Jet Grouting with Chemical Additives. International Journal of Geosynthetics and Ground Engineering, 2022, 8, 1.	0.9	8
8	An Overview on Some Engineering Properties of Fine-Grained Soils. , 2022, , .		0
9	Improving the Performance of Deep Soil Mixing in Clay with Chemical Additives. , 2022, , .		1
10	Impact of Colloidal Silica Treatment on an Earthfill Dam. , 2022, , .		0
11	Injection of Non-Conventional Binders to Improve Geomechanical Properties of Cataclasite. , 2022, , .		0
12	Probabilistic estimation of the advancement rate of the Tunnel Boring Machines on the basis of rock mass characteristics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8, 1.	1.3	1
13	Conditioning clayey soils with a dispersant agent for Deep Soil Mixing application: laboratory experiments and artificial neural network interpretation. Acta Geotechnica, 2022, 17, 5073-5087.	2.9	5
14	Permeation grouting of silt-sand mixtures. Transportation Geotechnics, 2022, 35, 100800.	2.0	12
15	A review of soil improvement with non-conventional grouts. International Journal of Geotechnical Engineering, 2021, 15, 273-287.	1.1	26
16	Relationship between dielectric constant of soils with clay content and dry unit weight. Environmental Geotechnics, 2021, 8, 134-147.	1.3	3
17	Laboratory Tests of Fully Grouted Bolts with a Pumpable Thixotropic Resin. Lecture Notes in Civil Engineering, 2021, , 867-874.	0.3	4
18	The influence of the two-component grout on the behaviour of a segmental lining in tunnelling. Tunnelling and Underground Space Technology, 2021, 109, 103750.	3.0	23

#	Article	IF	CITATIONS
19	A probabilistic approach for the evaluation of the stabilizing forces of fully grouted bolts. Transportation Geotechnics, 2021, 28, 100516.	2.0	1
20	Analysis of the behavior of the two-component grout around a tunnel segmental lining on the basis of experimental results and analytical approaches. Transportation Geotechnics, 2021, 29, 100570.	2.0	15
21	Probabilistic estimation of specific surface area and cation exchange capacity: a global multivariate distribution. Canadian Geotechnical Journal, 2021, 58, 1077-1094.	1.4	5
22	Parametric analysis for the estimation of the installation power for large helical piles in dry cohesionless soils. International Journal of Geotechnical Engineering, 2020, 14, 569-579.	1.1	8
23	Mineralogical and mechanical analysis of cement-stabilised sands. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2020, 173, 51-60.	0.7	4
24	An overview on the compaction characteristics of soils by laboratory tests. Engineering Geology, 2020, 278, 105830.	2.9	22
25	Statistical analysis of some correlations between compression index and Atterberg limits. Environmental Earth Sciences, 2020, 79, 1.	1.3	9
26	Experimental Evidence of the Effectiveness and Applicability of Colloidal Nanosilica Grouting for Liquefaction Mitigation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	24
27	Fall cone tests considering water content, cone penetration index, and plasticity angle of fine-grained soils. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12, 1347-1355.	3.7	7
28	Closure to discussion "A review on the behavior of helical piles as a potential offshore foundation system― Marine Georesources and Geotechnology, 2020, 38, 1118-1120.	1.2	0
29	Relationships between undrained shear strength, liquidity index, and water content ratio of clays. Bulletin of Engineering Geology and the Environment, 2020, 79, 4817-4828.	1.6	13
30	A Parametric Analysis on the Influence of the Binder Characteristics on the Behaviour of Passive Rock Bolts with the Block Reinforcement Procedure. Geotechnical and Geological Engineering, 2020, 38, 4159-4168.	0.8	2
31	A simplified mathematical approach for the evaluation of the stabilizing forces applied by a passive cemented bolt to a sliding rock block. Tunnelling and Underground Space Technology, 2020, 103, 103459.	3.0	4
32	A review on the behavior of helical piles as a potential offshore foundation system. Marine Georesources and Geotechnology, 2020, 38, 1013-1036.	1.2	43
33	Evaluation of the safety factors of shotcrete linings during the creep stage. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2020, 173, 274-282.	0.9	4
34	A novel approach to evaluating the compaction control of soils. Quarterly Journal of Engineering Geology and Hydrogeology, 2020, 53, 452-459.	0.8	6
35	Review of torque models for offshore helical piles. E3S Web of Conferences, 2020, 205, 12007.	0.2	2
36	Analysis of the effects of blast-induced damage zone with attenuating disturbance factor on the ground support interaction. Geomechanics and Geoengineering, 2019, , 1-11.	0.9	3

#	Article	IF	CITATIONS
37	Effect of Gravity of the Plastic Zones on the Behavior of Supports in Very Deep Tunnels Excavated in Rock Masses. International Journal of Geomechanics, 2019, 19, .	1.3	8
38	Assessment of the Safety Factor Evolution of the Shotcrete Lining for Different Curing Ages. Geotechnical and Geological Engineering, 2019, 37, 5555-5563.	0.8	6
39	A global database considering Atterberg limits with the Casagrande and fall-cone tests. Engineering Geology, 2019, 260, 105201.	2.9	20
40	Some generic trends on the basic engineering properties of fine-grained soils. Environmental Earth Sciences, 2019, 78, 1.	1.3	16
41	A statistical reappraisal of the relationship between liquid limit and specific surface area, cation exchange capacity and activity of clays. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11, 874-881.	3.7	19
42	Some relations among fall cone penetration, liquidity index and undrained shear strength of clays considering the sensitivity ratio. Bulletin of Engineering Geology and the Environment, 2019, 78, 5029-5038.	1.6	19
43	Assessment of red mud as sorptive landfill liner for the retention of arsenic (V). Journal of Environmental Management, 2019, 232, 271-285.	3.8	36
44	The Elastic Modulus Variation During the Shotcrete Curing Jointly Investigated by the Convergence-Confinement and the Hyperstatic Reaction Methods. Geotechnical and Geological Engineering, 2019, 37, 1435-1452.	0.8	9
45	Estimation of net theoretical excavation rates in concrete and sandstone. Marine Georesources and Geotechnology, 2019, 37, 739-745.	1.2	1
46	A numerical model to assess the creep of shotcrete linings. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2019, 172, 344-354.	0.9	6
47	Relation water content ratio-to-liquidity index versus the Atterberg limits ratio evaluated with the Kaniadakis exponential law. Geomechanics and Geoengineering, 2019, 14, 148-153.	0.9	8
48	The Flow Index of Clays and Its Relationship with Some Basic Geotechnical Properties. Geotechnical Testing Journal, 2019, 42, 20180110.	0.5	20
49	Statistical variability of the correlation plasticity index versus liquid limit for smectite and kaolinite. Applied Clay Science, 2018, 156, 152-159.	2.6	24
50	The Hyperstatic Reaction Method for the Analysis of the Sprayed Concrete Linings Behavior in Tunneling. Geotechnical and Geological Engineering, 2018, 36, 2143-2169.	0.8	14
51	Geophysical Signatures of Shearâ€Induced Damage and Frictional Processes on Rock Joints. Journal of Geophysical Research: Solid Earth, 2018, 123, 1143-1160.	1.4	32
52	Statistical analysis of some main geomechanical formulations evaluated with the Kaniadakis exponential law. Geomechanics and Geoengineering, 2018, 13, 139-145.	0.9	5
53	Some observations considering undrained shear strength, liquidity index, and fluid/solid ratio of mono-mineralic clays with water–ethanol mixtures. Canadian Geotechnical Journal, 2018, 55, 1048-1053.	1.4	8
54	A sensitivity analysis on the parameters affecting large diameter helical pile installation torque, depth and installation power for offshore applications. DFI Journal, 2018, 12, 171-185.	0.2	6

#	Article	IF	CITATIONS
55	Utilization of waste products as alternative landfill liner and cover materials – A critical review. Critical Reviews in Environmental Science and Technology, 2018, 48, 376-438.	6.6	56
56	Estimation of Uplift Capacity and Installation Power of Helical Piles in Sand for Offshore Structures. Journal of Waterway, Port, Coastal and Ocean Engineering, 2018, 144, .	0.5	14
57	Geotechnical and machinery properties influencing the offshore pile drillability. Marine Georesources and Geotechnology, 2017, 35, 266-274.	1.2	6
58	Assessment of the Theoretical Net Relief Drilling Rate for Conductor Pipes. Geotechnical and Geological Engineering, 2017, 35, 1249-1259.	0.8	0
59	Magnetic susceptibility measurements of seafloor massive sulphide mini-core samples for deep-sea mining applications. Quarterly Journal of Engineering Geology and Hydrogeology, 2017, 50, 88-93.	0.8	3
60	A probabilistic approach for the assessment of the influence of the dielectric constant of pore fluids on the liquid limit of smectite and kaolinite. Applied Clay Science, 2017, 145, 37-43.	2.6	17
61	Estimation of Shaft Radial Displacement beyond the Excavation Bottom before Installation of Permanent Lining in Nondilatant Weak Rocks with a Novel Formulation. International Journal of Geomechanics, 2017, 17, 04017051.	1.3	17
62	P-wave velocity measurements for preliminary assessments of the mineralization in seafloor massive sulfide mini-cores during drilling operations. Engineering Geology, 2017, 226, 316-325.	2.9	7
63	Microstructural Characterization of Red Mud as Affected by Inorganic and Organic Chemicals Permeation. Jom, 2017, 69, 1607-1612.	0.9	5
64	Theoretical Estimation of the Drilling Rates Comparing the Evans and Nishimatsu Models in Relation to the Offshore Piles. Journal of Waterway, Port, Coastal and Ocean Engineering, 2017, 143, 06016005.	0.5	4
65	A CPT-based model to predict the installation torque of helical piles in sand. Marine Georesources and Geotechnology, 2017, 35, 578-585.	1.2	19
66	Relationship between measured plastic limit and plastic limit estimated from undrained shear strength, water content ratio and liquidity index. Clay Minerals, 2017, 52, 509-519.	0.2	20
67	New Equations for Estimating Radial Loads on Deep Shaft Linings in Weak Rocks. International Journal of Geomechanics, 2016, 16, .	1.3	21
68	Plug excavation from the conductor pipes by assessing the specific energy. Journal of Petroleum Science and Engineering, 2016, 147, 851-856.	2.1	1
69	In situ and laboratory tests on a novel offshore mixed-in-place pile for oil and gas platforms. Journal of Petroleum Science and Engineering, 2016, 145, 502-509.	2.1	8
70	First results regarding the influence of mineralogy on the mechanical properties of seafloor massive sulfide samples. Engineering Geology, 2016, 214, 127-135.	2.9	13
71	Mixed-in-place response of two carbonate sands. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2016, 169, 153-163.	0.9	10
72	Electrical properties of seafloor massive sulfides. Geo-Marine Letters, 2016, 36, 235-245.	0.5	27

#	Article	IF	CITATIONS
73	A Combined Analytical and Numerical Approach for the Evaluation of Radial Loads on the Lining of Vertical Shafts. Geotechnical and Geological Engineering, 2016, 34, 1057-1065.	0.8	15
74	Preliminary Design of a Trench Cutter System for Deep-Sea Mining Applications Under Hyperbaric Conditions. IEEE Journal of Oceanic Engineering, 2016, 41, 930-943.	2.1	23
75	Engineering and environmental aspects of offshore soil mixing. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2015, 168, 267-278.	0.9	10
76	Latest Technological Developments in Offshore Deep Mixing for Piled Oil and Gas Platforms. , 2014, , .		7
77	Trench Cutter Case Histories and Their Possible Application for Offshore Piles as Relieve Drilling. Geotechnical and Geological Engineering, 2014, 32, 713-724.	0.8	9
78	Modification of clay adhesion to improve tunnelling excavation. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2013, 166, 21-31.	0.7	11
79	Comparison between Casagrande and drop-cone methods to calculate liquid limit for pure clay. Canadian Journal of Soil Science, 2012, 92, 859-864.	0.5	33
80	Liquid limit of mixtures of smectite, kaolinite and quartz powder with water and NaCl solution. International Journal of Geotechnical Engineering, 2012, 6, 117-123.	1.1	7
81	Strength of soil reinforced with fiber materials (Papyrus). Soil Mechanics and Foundation Engineering, 2012, 48, 241-247.	0.2	53
82	Influence of ethanol/water mixture on the undrained shear strength of pure clays. Bulletin of Engineering Geology and the Environment, 2012, 71, 389-398.	1.6	22
83	Undrained shear strength of clays as modified by pH variations. Bulletin of Engineering Geology and the Environment, 2012, 71, 135-148.	1.6	45
84	The Influence of the Dielectric Constant and Electrolyte Concentration of the Pore Fluids on the Undrained Shear Strength of Smectite. Soils and Foundations, 2010, 50, 757-763.	1.3	26
85	Relationships between strength properties and Atterberg limits of fine-grained soils. Geomechanics and Geoengineering, 0, , 1-15.	0.9	1