
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3289176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The low glutamate diet improves cognitive functioning in veterans with Gulf War Illness and resting-state EEG potentially predicts response. Nutritional Neuroscience, 2022, 25, 2247-2258.	1.5	10
2	Review of the Midbrain Ascending Arousal Network Nuclei and Implications for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), Gulf War Illness (GWI) and Postexertional Malaise (PEM). Brain Sciences, 2022, 12, 132.	1.1	6
3	Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM). Brain Sciences, 2022, 12, 78.	1.1	8
4	Exercise modifies glutamate and other metabolic biomarkers in cerebrospinal fluid from Gulf War Illness and Myalgic encephalomyelitis / Chronic Fatigue Syndrome. PLoS ONE, 2021, 16, e0244116.	1.1	6
5	Effect of the low glutamate diet on inflammatory cytokines in veterans with Gulf War Illness (GWI): A pilot study. Life Sciences, 2021, 280, 119637.	2.0	8
6	Subcortical brain segment volumes in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Life Sciences, 2021, 282, 119749.	2.0	5
7	Submaximal Exercise Provokes Increased Activation of the Anterior Default Mode Network During the Resting State as a Biomarker of Postexertional Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Frontiers in Neuroscience, 2021, 15, 748426.	1.4	10
8	Understanding COVID-19 Pathogenesis: A Drug-Repurposing Effort to Disrupt Nsp-1 Binding to Export Machinery Receptor Complex. Pathogens, 2021, 10, 1634.	1.2	2
9	Exercise alters cerebellar and cortical activity related to working memory in phenotypes of Gulf War Illness. Brain Communications, 2020, 2, fcz039.	1.5	11
10	Informatics Inference of Exercise-Induced Modulation of Brain Pathways Based on Cerebrospinal Fluid Micro-RNAs in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Network and Systems Medicine, 2020, 3, 142-158.	2.7	2
11	Machine Learning Detects Pattern of Differences in Functional Magnetic Resonance Imaging (fMRI) Data between Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Brain Sciences, 2020, 10, 456.	1.1	8
12	The Low Glutamate Diet Effectively Improves Pain and Other Symptoms of Gulf War Illness. Nutrients, 2020, 12, 2593.	1.7	28
13	Exercise alters brain activation in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Communications, 2020, 2, fcaa070.	1.5	10
14	The Low Glutamate Diet Significantly Improves Pain and Other Symptoms in Veterans with Gulf War Illness. Current Developments in Nutrition, 2020, 4, nzaa057_027.	0.1	1
15	Logistic Regression Algorithm Differentiates Gulf War Illness (GWI) Functional Magnetic Resonance Imaging (fMRI) Data from a Sedentary Control. Brain Sciences, 2020, 10, 319.	1.1	4
16	Gulf War Illness Symptom Severity and Onset: A Cross-Sectional Survey. Military Medicine, 2020, 185, e1120-e1127.	0.4	14
17	A Machine Learning Approach to the Differentiation of Functional Magnetic Resonance Imaging Data of Chronic Fatigue Syndrome (CFS) From a Sedentary Control. Frontiers in Computational Neuroscience, 2020, 14, 2.	1.2	15
18	Systemic Hyperalgesia in Females with Gulf War Illness, Chronic Fatigue Syndrome and Fibromyalgia. Scientific Reports. 2020. 10. 5751.	1.6	7

#	Article	IF	CITATIONS
19	Chronic fatigue syndrome in the emergency department. Open Access Emergency Medicine, 2019, Volume 11, 15-28.	0.6	15
20	Orthostatic intolerance in chronic fatigue syndrome. Journal of Translational Medicine, 2019, 17, 185.	1.8	19
21	Exercise challenge alters Default Mode Network dynamics in Gulf War Illness. BMC Neuroscience, 2019, 20, 7.	0.8	7
22	Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention. PLoS ONE, 2019, 14, e0226481.	1.1	4
23	The physician and hereditary angioedema friend or foe: 62-year diagnostic delay and iatrogenic procedures. Allergy, Asthma and Clinical Immunology, 2018, 14, 75.	0.9	4
24	Verification of exercise-induced transient postural tachycardia phenotype in Gulf War Illness. American Journal of Translational Research (discontinued), 2018, 10, 3254-3264.	0.0	10
25	Chronic fatigue syndrome prevalence is grossly overestimated using Oxford criteria compared to Centers for Disease Control (Fukuda) criteria in a U.S. population study. Fatigue: Biomedicine, Health and Behavior, 2017, 5, 215-230.	1.2	14
26	Exercise – induced changes in cerebrospinal fluid miRNAs in Gulf War Illness, Chronic Fatigue Syndrome and sedentary control subjects. Scientific Reports, 2017, 7, 15338.	1.6	28
27	Protein networks in induced sputum from smokers and COPD patients. International Journal of COPD, 2015, 10, 1957.	0.9	21
28	In silico analysis of autoimmune diseases and genetic relationships to vaccination against infectious diseases. BMC Immunology, 2014, 15, 61.	0.9	21
29	Migraine in gulf war illness and chronic fatigue syndrome: prevalence, potential mechanisms, and evaluation. Frontiers in Physiology, 2013, 4, 181.	1.3	22
30	Increased Brain White Matter Axial Diffusivity Associated with Fatigue, Pain and Hyperalgesia in Gulf War Illness. PLoS ONE, 2013, 8, e58493.	1.1	94
31	Exercise Challenge in Gulf War Illness Reveals Two Subgroups with Altered Brain Structure and Function. PLoS ONE, 2013, 8, e63903.	1.1	70
32	A Chronic Fatigue Syndrome (CFS) severity score based on case designation criteria. American Journal of Translational Research (discontinued), 2013, 5, 53-68.	0.0	32
33	Prefrontal lactate predicts exercise-induced cognitive dysfunction in Gulf War Illness. American Journal of Translational Research (discontinued), 2013, 5, 212-23.	0.0	22
34	Administer and collect medical questionnaires with Google documents: a simple, safe, and free system. Applied Medical Informatics, 2013, 33, 12-21.	1.0	47
35	Dyspnea in Chronic Fatigue Syndrome (CFS): Comparison of Two Prospective Cross-Sectional Studies. Global Journal of Health Science, 2012, 5, 94-110.	0.1	8
36	Rise of the Sensors: Nociception and Pruritus. Current Allergy and Asthma Reports, 2012, 12, 104-114.	2.4	20

#	Article	IF	CITATIONS
37	Migraine headaches in Chronic Fatigue Syndrome (CFS): Comparison of two prospective cross-sectional studies. BMC Neurology, 2011, 11, 30.	0.8	44
38	Subjective Nasal Fullness and Objective Congestion. Proceedings of the American Thoracic Society, 2011, 8, 62-69.	3.5	45
39	Relationships among rhinitis, fibromyalgia, and chronic fatigue. Allergy and Asthma Proceedings, 2010, 31, 169-178.	1.0	20
40	The Sinus Headache Explained. Current Allergy and Asthma Reports, 2010, 10, 202-209.	2.4	9
41	Xenotropic Murine Leukemia Virus-Related Virus in Chronic Fatigue Syndrome and Prostate Cancer. Current Allergy and Asthma Reports, 2010, 10, 210-214.	2.4	8
42	Rhinorrhea, cough and fatigue in patients taking sitagliptin. Allergy, Asthma and Clinical Immunology, 2010, 6, 8.	0.9	28
43	The placebo effect: Plugging the nostrils of unmet needs. Current Allergy and Asthma Reports, 2009, 9, 149-152.	2.4	2
44	Neuroregulation of Human Nasal Mucosa. Annals of the New York Academy of Sciences, 2009, 1170, 604-609.	1.8	34
45	Pathogenic Mechanisms of Idiopathic Nonallergic Rhinitis. World Allergy Organization Journal, 2009, 2, 106-114.	1.6	21
46	The Nonallergic Rhinitis of Chronic Fatigue Syndrome. , 2009, , 81-97.		2
47	New concepts of neural regulation in human nasal mucosa. Acta Clinica Croatica, 2009, 48, 65-73.	0.1	11
48	Nasal reflexes: Implications for exercise, breathing, and sex. Current Allergy and Asthma Reports, 2008, 8, 147-153.	2.4	31
49	Neural regulation of mucosal function. Pulmonary Pharmacology and Therapeutics, 2008, 21, 442-448.	1.1	26
50	Neural aspects of allergic rhinitis. Current Opinion in Otolaryngology and Head and Neck Surgery, 2007, 15, 268-273.	0.8	36
51	Delayed-type hypersensitivity reaction to the meta-cresol component of insulin. Annals of Allergy, Asthma and Immunology, 2007, 99, 194-195.	0.5	26
52	Alpha-adrenergic mRNA subtype expression in the human nasal turbinate. Canadian Journal of Anaesthesia, 2007, 54, 549-555.	0.7	11
53	Sensing the air around us: The voltage-gated-like ion channel family. Current Allergy and Asthma Reports, 2007, 7, 85-92.	2.4	9
54	Nasonasal reflexes, the nasal cycle, and sneeze. Current Allergy and Asthma Reports, 2007, 7, 105-111.	2.4	80

4

#	Article	IF	CITATIONS
55	Proteomics of Sinusitis Nasal Lavage Fluid. , 2007, , 327-346.		1
56	Differentiating osteomeatal complex disease and chronic rhinosinusitis from nonallergic rhinitis. Clinical Allergy and Immunology, 2007, 19, 115-46.	0.7	1
57	The nonallergic rhinitis of chronic fatigue syndrome. Clinical Allergy and Immunology, 2007, 19, 427-47.	0.7	4
58	Chronic rhinosinusitis with glandular hypertrophy. Clinical Allergy and Immunology, 2007, 20, 121-46.	0.7	3
59	Cerebrospinal Fluid Corticotropin-Releasing Factor Concentration is Associated with Pain but not Fatigue Symptoms in Patients with Fibromyalgia. Neuropsychopharmacology, 2006, 31, 2776-2782.	2.8	89
60	A chronic fatigue syndrome – related proteome in human cerebrospinal fluid. BMC Neurology, 2005, 5, 22.	0.8	74
61	Persistent nonallergic rhinosinusitis. Current Allergy and Asthma Reports, 2005, 5, 233-242.	2.4	10
62	Therapeutic approaches to mucus hypersecretion. Current Allergy and Asthma Reports, 2005, 5, 243-251.	2.4	32
63	Identification of human nasal mucous proteins using proteomics. Proteomics, 2005, 5, 2949-2959.	1.3	113
64	Neuropathology in Rhinosinusitis. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 5-11.	2.5	39
65	Pathophysiological classification of chronic rhinosinusitis. Respiratory Research, 2005, 6, 149.	1.4	33
66	Human neuroglobin protein in cerebrospinal fluid. Proteome Science, 2005, 3, 2.	0.7	15
67	Chlorine inhalation produces nasal airflow limitation in allergic rhinitic subjects without evidence of neuropeptide release. Neuropeptides, 2004, 38, 351-358.	0.9	24
68	Covariates of corticotropin-releasing hormone (CRH) concentrations in cerebrospinal fluid (CSF) from healthy humans. BMC Neuroscience, 2004, 5, 58.	0.8	4
69	Cerebrospinal fluid levels of opioid peptides in fibromyalgia and chronic low back pain. BMC Musculoskeletal Disorders, 2004, 5, 48.	0.8	129
70	Analysis of the sinusitis nasal lavage fluid proteome using capillary liquid chromatography interfaced to electrospray ionization-quadrupole time of flight- tandem mass spectrometry. Electrophoresis, 2004, 25, 1386-1393.	1.3	38
71	Rhinosinusitis: Establishing definitions for clinical research and patient care. Journal of Allergy and Clinical Immunology, 2004, 114, 155-212.	1.5	705
72	Otolaryngology-Head and Neck Surgery. Otolaryngology - Head and Neck Surgery, 2004, 131, 1-62.	1.1	343

JAMES N BARANIUK

#	Article	IF	CITATIONS
73	A tale of two neurons in the upper airways: Pain versus itch. Current Allergy and Asthma Reports, 2003, 3, 215-220.	2.4	14
74	Upper airway neurogenic mechanisms. Current Opinion in Allergy and Clinical Immunology, 2002, 2, 11-19.	1.1	78
75	Density of Middle Turbinate Subepithelial Mucous Glands in Patients with Chronic Rhinosinusitis. Otolaryngology - Head and Neck Surgery, 2002, 127, 190-195.	1.1	35
76	Human nasal allergen provocation for determination of true allergic rhinitis: Methods for clinicians. Current Allergy and Asthma Reports, 2002, 2, 194-202.	2.4	15
77	Cytokines in nasal lavage fluids from acute sinusitis, allergic rhinitis, and chronic fatigue syndrome subjects. Allergy and Asthma Proceedings, 2002, 23, 185-90.	1.0	25
78	Mechanisms of allergic rhinitis. Current Allergy and Asthma Reports, 2001, 1, 207-217.	2.4	28
79	Neurogenic mechanisms in rhinosinusitis. Current Allergy and Asthma Reports, 2001, 1, 252-261.	2.4	36
80	Irritant Rhinitis in Allergic, Nonallergic, Control and Chronic Fatigue Syndrome Populations. The Journal of Chronic Fatigue Syndrome: Multidisciplinary Innovations in Researchory and Clinical Practice, 2000, 7, 3-31.	0.4	9
81	Tobacco Sensitivity in Chronic Fatigue Syndrome (CFS). The Journal of Chronic Fatigue Syndrome: Multidisciplinary Innovations in Researchory and Clinical Practice, 2000, 7, 33-52.	0.4	3
82	CFTR antisense phosphorothioate oligodeoxynucleotides (S-ODns) induce tracheo-bronchial mucin (TBM) mRNA expression in human airway mucosa. Glycoconjugate Journal, 1999, 16, 7-11.	1.4	1
83	Item Responsiveness of a Rhinitis and Asthma Symptom Score During a Pollen Season. Journal of Asthma, 1999, 36, 459-465.	0.9	14
84	Rhinitis Symptoms in Chronic Fatigue Syndrome. Annals of Allergy, Asthma and Immunology, 1998, 81, 359-365.	0.5	64
85	Nasal Secretion Analysis in Allergic Rhinitis, Cystic Fibrosis, and Nonallergic Fibromyalgia/Chronic Fatigue Syndrome Subjects. American Journal of Rhinology & Allergy, 1998, 12, 435-440.	2.3	31
86	Enhancement of Histamine-Induced Vascular Permeability in Guinea Pigs Infected with Bordetella bronchiseptica. American Journal of Rhinology & Allergy, 1998, 12, 143-148.	2.3	1
87	IgE Concentrations in Chronic Fatigue Syndrome. The Journal of Chronic Fatigue Syndrome: Multidisciplinary Innovations in Researchory and Clinical Practice, 1998, 4, 13-21.	0.4	7
88	Rhinovirus infection induces mucus hypersecretion. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L1017-L1023.	1.3	39
89	Development and validation of a rhinoconjunctivitis and asthma symptom score for use as an outcome measure in clinical trialsâ~țâ~țâ~țâ~ Journal of Allergy and Clinical Immunology, 1997, 100, 16-22.	1.5	94
90	Perennial Rhinitis Subjects Have Altered Vascular, Glandular, and Neural Responses to Bradykinin Nasal Provocation. International Archives of Allergy and Immunology, 1994, 103, 202-208.	0.9	55

JAMES N BARANIUK

#	Article	IF	CITATIONS
91	Effects of Substance P and Calcitonin Gene Related Peptide (CGRP) on Guinea Pig Nasal Mucosal Secretion in vivo. Acta Oto-Laryngologica, 1993, 113, 533-539.	0.3	22
92	Localization of m3 Muscarinic Receptor mRNA in Human Nasal Mucosa. American Journal of Rhinology & Allergy, 1992, 6, 145-148.	2.3	17
93	Substance P and Neurokinin A in Human Nasal Mucosa. American Journal of Respiratory Cell and Molecular Biology, 1991, 4, 228-236.	1.4	157
94	Pollen Grain Column Chromatography: A Novel Method for Separation of Pollen Wall Solutes. Annals of Botany, 1990, 66, 321-329.	1.4	7
95	Neuropeptide Y (NPY) in Human Nasal Mucosa. American Journal of Respiratory Cell and Molecular Biology, 1990, 3, 165-173.	1.4	67
96	The Pathophysiology of Rhinitis: II. Assessment of the Sources of Protein in Histamine-induced Nasal Secretions. The American Review of Respiratory Disease, 1989, 139, 791-800.	2.9	159
97	Nasal Reflexes. American Journal of Rhinology & Allergy, 1988, 2, 109-116.	2.3	20
98	Pathophysiology of Rhinitis: 1. Assessment of the Sources of Protein in Methacholine-induced Nasal Secretions. The American Review of Respiratory Disease, 1988, 138, 413-420.	2.9	123
99	Naloxone, Ethanol, and the Chlorpropamide Alcohol Flush. Alcoholism: Clinical and Experimental Research, 1987, 11, 518-520.	1.4	6
100	The Effect of the Low Glutamate Diet on the Reduction of Psychiatric Symptoms in Veterans With Gulf War Illness: A Pilot Randomized-Controlled Trial. Frontiers in Psychiatry, 0, 13, .	1.3	7