
Julia Bakhtiyarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3288629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The synthesis and reactions of betaines formed in reactions of tertiary phosphines with unsaturated carboxylic acids and their derivatives. Heteroatom Chemistry, 2006, 17, 557-566.	0.4	27
2	Kinetics and mechanism of triphenylphosphine quarternization with unsaturated carboxylic acids in the medium of acetic acid. Russian Journal of General Chemistry, 2009, 79, 919-924.	0.3	24
3	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 384-389.	0.3	19
4	Kinetics and mechanism of quaternization of tertiary phosphines with unsaturated carboxylic acids. Kinetic studies of the reactions in aprotic solvents. Russian Journal of General Chemistry, 2011, 81, 824-830.	0.3	19
5	Crystal structure of phosphonium carboxylate complexes. The role of the metal coordination geometry, ligand conformation and hydrogen bonding. CrystEngComm, 2014, 16, 9010-9024.	1.3	18
6	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 376-383.	0.3	16
7	Kinetic study of the reaction of triphenylphosphine with acrylic acid in alcohol media. Russian Journal of General Chemistry, 2010, 80, 1738-1742.	0.3	16
8	Kinetics and Mechanism of Triphenylphosphine Quarternization with Unsaturated Carboxylic Acids in Various Media. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 857-859.	0.8	16
9	New phosphorus ylides in reactions of tertiary phosphines with phosphorylated quinone methide. Mendeleev Communications, 2009, 19, 37-38.	0.6	15
10	Synthesis and Antimicrobial Activities of Phosphonium Salts on Basis of Triphenylphosphine and 3,5-Di-Tert-Butyl-4-Hydroxybenzyl Bromide. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 15-18.	0.8	14
11	Kinetics and mechanism of the unusual insertion reactions of aryl isocyanates into the C-C bond of the phosphonium zwitter-ion derived by the reaction of triisopropylphosphine with ethyl 2-cyanoacrylate. Heteroatom Chemistry, 1998, 9, 665-668.	0.4	13
12	Kinetic Study of the Reaction of Tertiary Phosphines with Acrylic Acid in Aprotic Solvents. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 854-856.	0.8	13
13	Synthesis and Antimicrobial Activity of Carboxylate Phosphabetaines Derivatives with Alkyl Chains of Various Lengths. Journal of Chemistry, 2013, 2013, 1-6.	0.9	13
14	Synthesis and Antimicrobial Activity of Bis-4,6-sulfonamidated 5,7-Dinitrobenzofuroxans. Journal of Chemistry, 2014, 2014, 1-6.	0.9	13
15	Synthesis, Structure and Reactivity of Carboxylate Phosphabetaines. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 91-91.	0.8	12
16	Synthesis and properties of phosphabetaine structures: IV. 3-(triphenylphosphonio)propanoate in reactions with dipolar electrophilic reagents. Russian Journal of General Chemistry, 2006, 76, 430-436.	0.3	11
17	Carboxylate phosphabetaines based on tertiary phosphines and unsaturated dicarboxylic acids. Russian Journal of Organic Chemistry, 2007, 43, 207-213.	0.3	11
18	New di- and tricarboxylate phosphabetaines. Russian Chemical Bulletin, 2016, 65, 1308-1312.	0.4	11

Julia Bakhtiyarova

#	Article	IF	CITATIONS
19	Crystal structure of new carboxylate phosphabetaines and phosphonium salts conjugated with them. Russian Chemical Bulletin, 2016, 65, 1313-1318.	0.4	11
20	Triphenylphosphine in reactions with ï‰-haloalkylcarboxylic acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1637-1639.	0.8	10
21	New phosphonium salts based on 3-(diphenylphosphino)propanoic and ω-haloalkanoic acids. Mendeleev Communications, 2021, 31, 242-243.	0.6	9
22	Phosphabetaines on the Basis of Triphenylphosphine and Unsaturated Dicarboxylic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2063-2063.	0.8	8
23	Synthesis, structure, and biological activity of dicarboxylate phosphabetaines. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1633-1636.	0.8	8
24	New biologically active phosphonium salts based on 3-(diphenylphosphino)propionic acid and unsaturated amides. Russian Chemical Bulletin, 2020, 69, 1569-1572.	0.4	8
25	Synthesis and biological evaluation of novel carboxylate phosphabetaines derivatives with long alkyl chains. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1676-1678.	0.8	7
26	Synthesis, structure and bioactivity of novel carboxylate phosphabetaine derivatives with long alkyl chains. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 476-479.	0.8	7
27	Synthesis of carboxylate phosphabetaines from 3-(diphenylphosphino)propanoic acid and unsaturated monocarboxylic acids. Russian Journal of General Chemistry, 2015, 85, 2037-2041.	0.3	6
28	Synthesis, structure, and antimicrobial activity of (carboxyalkyl)dimethylsulfonium halides. Russian Journal of General Chemistry, 2017, 87, 1903-1907.	0.3	6
29	Synthesis of quaternary phosphonium salts from phosphorylated sterically hindered phenols. Russian Journal of Organic Chemistry, 2012, 48, 1574-1575.	0.3	5
30	Synthesis and structure of novel phosphorylated azomethines. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1679-1681.	0.8	4
31	The reaction of phosphorylation of trans-aconitic acid by tertiary phosphines. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 319-320.	0.8	4
32	Carboxylate Phosphabetaines Containing Chiral Carbon Atom: Synthesis and NMR Spectroscopy Data. Russian Journal of General Chemistry, 2021, 91, 1333-1341.	0.3	4
33	Synthesis of carboxylate arsenobetaines based on (carboxyalkyl)triphenylarsonium halides. Russian Journal of General Chemistry, 2015, 85, 2058-2064.	0.3	3
34	Synthesis of quaternary phosphonium salts on the basis of 2,6-di-tert-butyl-4-methylphenol. Russian Journal of Organic Chemistry, 2012, 48, 1576-1577.	0.3	2
35	The Influence of Solvents on the Alkylation of Carboxylate Phosphabetaines with Alkyl Iodides. Russian Journal of General Chemistry, 2017, 87, 2789-2793.	0.3	2
36	New complexes of gadolinium with dicarboxylate diphosphabetaines. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-5.	0.8	2

Julia Bakhtiyarova

#	Article	IF	CITATIONS
37	Reuse of low sulfur oil residues as a base for boiler and marine fuel. Power Engineering Research Equipment Technology, 2022, 24, 16-28.	0.1	2
38	Kinetics and Mechanism of the Insertion Reaction of Arylisocyanates into C‒C Bond of Phosphabetaine Obtained ont the Basis of Triisopropylphosphine and 2-Cyanoethylacrylate. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 89-89.	0.8	1
39	C→N migration of methoxycarbonyl and acetyl groups in reactions of functionally substituted carbanions with aryl isocyanates. Kinetics and mechanism of the reactions. Russian Chemical Bulletin, 2006, 55, 879-882.	0.4	1
40	Modification of the anticestodal drug 5-chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxybenzamide with a view to improve its biological effect. Russian Journal of Organic Chemistry, 2014, 50, 800-804.	0.3	1
41	5-Amino-Substituted Derivatives of 4-Nitrofurazane: Synthesis, Structure, and Biological Activity. Russian Journal of General Chemistry, 2018, 88, 898-902.	0.3	1
42	Antimicrobial activity of novel isothiuronium salts with 7-chloro-4,6-dinitrobenzofuroxan-5-olate anion. Mendeleev Communications, 2021, 31, 365-367.	0.6	1
43	Synthesis of novel phosphonium salts derived from tertiary phosphines and substituted acrylic acids. Phosphorus, Sulfur and Silicon and the Related Elements, O, , 1-5.	0.8	1
44	Kinetics and Mechanism of the Insertion Reaction of Arylisocyanates on CC Bond of Zwitter-Ions. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2205-2205.	0.8	0
45	The unusual reaction of alkylation of dicarboxylate phosphabetaines in alcohol media. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 580-584.	0.8	0