
Sergii Golovynskyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3288485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparing the Impact of <scp>NIR</scp> , Visible and <scp>UV</scp> Light on <scp>ROS</scp> Upregulation <i>via</i> Photoacceptors of Mitochondrial Complexes in Normal, Immune and Cancer Cells. Photochemistry and Photobiology, 2023, 99, 106-119.	1.3	7
2	Insight into Al doping effect on photodetector performance of CdS and CdS:Mg films prepared by self-controlled nebulizer spray technique. Journal of Alloys and Compounds, 2022, 892, 160801.	2.8	24
3	Macrophages Modulated by Red/NIR Light: Phagocytosis, Cytokines, Mitochondrial Activity, Ca ²⁺ Influx, Membrane Depolarization and Viability. Photochemistry and Photobiology, 2022, 98, 484-497.	1.3	7
4	Influence of anharmonicity and interlayer interaction on Raman spectra in mono- and few-layer MoS2: A computational study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 114999.	1.3	9
5	NMDA receptor expression during cell transformation process at early stages of liver cancer in rodent models. American Journal of Physiology - Renal Physiology, 2022, 322, G142-G153.	1.6	3
6	Red and near infrared light-stimulated angiogenesis mediated via Ca2+ influx, VEGF production and NO synthesis in endothelial cells in macrophage or malignant environments. Journal of Photochemistry and Photobiology B: Biology, 2022, 227, 112388.	1.7	11
7	Plasmonic enhancement of exciton and trion photoluminescence in 2D MoS2 decorated with Au nanorods: Impact of nonspherical shape. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115213.	1.3	7
8	Raman Scattering and Exciton Photoluminescence in Few-Layer GaSe: Thickness- and Temperature-Dependent Behaviors. Journal of Physical Chemistry C, 2022, 126, 10459-10468.	1.5	7
9	Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer's disease. Alzheimer's Research and Therapy, 2022, 14, .	3.0	22
10	Metamorphic InAs/InAlAs/InGaAs quantum dots: Establishing the limit for indium composition in InGaAs buffers. Microelectronic Engineering, 2022, 263, 111840.	1.1	0
11	MoS2 monolayer quantum dots on a flake: Efficient sensitization of exciton and trion photoluminescence via resonant nonradiative energy and charge transfers. Applied Surface Science, 2022, 601, 154209.	3.1	4
12	Red and near-infrared light evokes Ca2+ influx, endoplasmic reticulum release and membrane depolarization in neurons and cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2021, 214, 112088.	1.7	33
13	Mechanoluminescent materials for athletic analytics in sports science. Science Bulletin, 2021, 66, 206-209.	4.3	27
14	Enhancement of Raman Scattering and Exciton/Trion Photoluminescence of Monolayer and Few-Layer MoS ₂ by Ag Nanoprisms and Nanoparticles: Shape and Size Effects. Journal of Physical Chemistry C, 2021, 125, 4119-4132.	1.5	32
15	InAs/InGaAs quantum dots confined by InAlAs barriers for enhanced room temperature light emission: Photoelectric properties and deep levels. Microelectronic Engineering, 2021, 238, 111514.	1.1	8
16	Theoretical study of Raman scattering in MoS 2 x Se 2(1 â^'  x) layered alloys. Journal of Raman Spectroscopy, 2021, 52, 1193-1205.	1.2	2
17	MoS2 two-dimensional quantum dots with weak lateral quantum confinement: Intense exciton and trion photoluminescence. Surfaces and Interfaces, 2021, 23, 100909.	1.5	15
18	Trion Binding Energy Variation on Photoluminescence Excitation Energy and Power during Direct to Indirect Bandgap Crossover in Monolayer and Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2021, 125, 17806-17819.	1.5	22

SERGII GOLOVYNSKYI

#	Article	IF	CITATIONS
19	Hexagram bi-layer MoS2 flake: The impact of polycrystallinity and strains on the exciton and trion photoluminescence. Surfaces and Interfaces, 2021, 26, 101343.	1.5	6
20	Spectroscopy and Theoretical Modeling of Phonon Vibration Modes and Band Gap Energy of Cu ₂ ZnSn(S _{<i>x</i>} Se _{1–<i>x</i>}) ₄ Bulk Crystals and Thin Films. ACS Omega, 2021, 6, 29137-29148.	1.6	7
21	Below bandgap photoluminescence of an AlN crystal: Co-existence of two different charging states of a defect center. APL Materials, 2020, 8, .	2.2	24
22	Defect levels and interface space charge area responsible for negative photovoltage component in InAs/GaAs quantum dot photodetector structure. Microelectronic Engineering, 2020, 230, 111367.	1.1	4
23	Raman mapping of MoS2 at Cu2ZnSnS4/Mo interface in thin film. Solar Energy, 2020, 205, 154-160.	2.9	25
24	Laser-Induced Periodic Ag Surface Structure with Au Nanorods Plasmonic Nanocavity Metasurface for Strong Enhancement of Adenosine Nucleotide Label-Free Photoluminescence Imaging. ACS Omega, 2020, 5, 14030-14039.	1.6	15
25	Photoelectric and deep level study of metamorphic InAs/InGaAs quantum dots with GaAs confining barriers for photoluminescence enhancement. Semiconductor Science and Technology, 2020, 35, 095022.	1.0	3
26	Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science, 2020, 515, 146033.	3.1	79
27	A ZnS/CaZnOS Heterojunction for Efficient Mechanicalâ€toâ€Optical Energy Conversion by Conduction Band Offset. Advanced Materials, 2020, 32, e1907747.	11.1	114
28	Near-infrared lateral photoresponse in InGaAs/GaAs quantum dots. Semiconductor Science and Technology, 2020, 35, 055029.	1.0	14
29	Metamorphic InAs/InGaAs Quantum Dot Structures: Photoelectric Properties and Deep Levels. Springer Proceedings in Physics, 2020, , 319-336.	0.1	1
30	Plasmonic Nanocavity Metasurface Based on Laser-Structured Silver Surface and Silver Nanoprisms for the Enhancement of Adenosine Nucleotide Photoluminescence. ACS Applied Nano Materials, 2019, 2, 7152-7161.	2.4	12
31	Red-shifted photoluminescence and gamma irradiation stability of "micromorph―(nc-Si/SiO)/DLC down-converter anti-reflection coatings. Diamond and Related Materials, 2019, 100, 107578.	1.8	8
32	Control of secondary phases and disorder degree in Cu2ZnSnS4 films by sulfurization at varied subatmospheric pressures. Solar Energy Materials and Solar Cells, 2019, 200, 109915.	3.0	33
33	Defect influence on in-plane photocurrent of InAs/InGaAs quantum dot array: long-term electron trapping and Coulomb screening. Nanotechnology, 2019, 30, 305701.	1.3	15
34	Kinetics peculiarities of photovoltage in vertical metamorphic InAs/InGaAs quantum dot structures. Semiconductor Science and Technology, 2019, 34, 075025.	1.0	6
35	Red and nearâ€infrared light induces intracellular Ca ^{2+} flux via the activation of glutamate <i>N</i> â€methylâ€Dâ€aspartate receptors. Journal of Cellular Physiology, 2019, 234, 15989-16002.	2.0	26
36	Antireflection Enhancement by Composite Nanoporous Zeolite 3A–Carbon Thin Film. Nanomaterials, 2019, 9, 1641.	1.9	11

#	Article	IF	CITATIONS
37	Morphoâ€Functional Characteristics of Bone Marrow Multipotent Mesenchymal Stromal Cells after Activation or Inhibition of Epidermal Growth Factor and Tollâ€Like Receptors or Treatment with DNA Intercalator Cisplatin. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 24-33.	1.1	4
38	Novel Hybrid Compound 4-[(E)-2-phenylethenesulfonamido]-N-hydroxybutanamide with Antimetastatic and Cytotoxic Action: Synthesis and Anticancer Screening. Anti-Cancer Agents in Medicinal Chemistry, 2019, 18, 1495-1504.	0.9	3
39	High transparent and conductive undoped ZnO thin films deposited by reactive ion-beam sputtering. Vacuum, 2018, 153, 204-210.	1.6	15
40	Secondary phases in Cu 2 ZnSnS 4 films obtained by spray pyrolysis at different substrate temperatures and Cu contents. Materials Letters, 2018, 216, 173-175.	1.3	25
41	Thickness-dependent structural parameters of kesterite Cu 2 ZnSnSe 4 thin films for solar cell absorbers. Materials Letters, 2018, 225, 82-84.	1.3	8
42	Interband Photoconductivity of Metamorphic InAs/InGaAs Quantum Dots in the 1.3–1.55-μm Window. Nanoscale Research Letters, 2018, 13, 103.	3.1	14
43	Peripheral N-methyl-D-aspartate receptor localization and role in gastric acid secretion regulation: immunofluorescence and pharmacological studies. Scientific Reports, 2018, 8, 7445.	1.6	8
44	Optical windows for head tissues in nearâ€infrared and shortâ€wave infrared regions: Approaching transcranial light applications. Journal of Biophotonics, 2018, 11, e201800141.	1.1	128
45	Deep levels in metamorphic InAs/InGaAs quantum dot structures with different composition of the embedding layers. Semiconductor Science and Technology, 2017, 32, 125001.	1.0	19
46	Comparative Study of Photoelectric Properties of Metamorphic InAs/InGaAs and InAs/GaAs Quantum Dot Structures. Nanoscale Research Letters, 2017, 12, 335.	3.1	17
47	Bipolar Effects in Photovoltage of Metamorphic InAs/InGaAs/GaAs Quantum Dot Heterostructures: Characterization and Design Solutions for Light-Sensitive Devices. Nanoscale Research Letters, 2017, 12, 559.	3.1	7
48	Combining optical imaging and pharmacological methods to localize N-methyl-D-aspartate glutamate receptors in a stomach wall. , 2017, , .		0
49	Optical transparence windows for head tissues in near and short-wave infrared regions. , 2017, , .		2
50	Photoluminescence of porous silicon as an indicator of its interaction with nucleic acids. EPJ Applied Physics, 2016, 76, 30401.	0.3	3
51	Intensity-dependent nonlinearity of the lateral photoconductivity in InGaAs/GaAs dot-chain structures. Journal of Applied Physics, 2016, 119, 184303.	1.1	16
52	Photoelectric properties of the metamorphic InAs/InGaAs quantum dot structure at room temperature. Journal of Applied Physics, 2015, 117, 214312.	1.1	16
53	Comparison of semi-insulating InAlAs and InP:Fe for InP-based buried-heterostructure QCLs. Journal of Crystal Growth, 2015, 425, 360-363.	0.7	4
54	Excitation intensity dependence of lateral photocurrent in InGaAs/GaAs dot-chain structures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2622-2626.	0.9	11

#	Article	IF	CITATIONS
55	Effect of carrier capture by deep levels on lateral photoconductivity of InGaAs/GaAs quantum dot structures. Journal of Applied Physics, 2011, 110, 043717.	1.1	21
56	THE ANISOTROPY OF ELECTRICAL PROPERTIES OF InGaAs / GaAs HETEROSTRUCTURES WITH CHAINS OF InGaAs QUANTUM DOTS. , 2011, , .		0
57	Photoconductivity spectra of Ge/Si heterostructures with Ge QDs. Nanotechnology, 2007, 18, 185401.	1.3	13
58	Photocurrent spectroscopy of indirect transitions in Ge/Si multilayer quantum dots at room temperature. Surface Science, 2007, 601, L45-L48.	0.8	6
59	Lateral photoconductivity of Ge/Si heterostructures with Ge quantum dots. Semiconductors, 2007, 41, 935-938.	0.2	1
60	The lateral photoconductivity of Si/Ge structures with quantum dots. Semiconductor Science and Technology, 2006, 21, 857-859.	1.0	6