John B Ketterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3288069/publications.pdf

Version: 2024-02-01

204 papers

5,681 citations

35 h-index 97045 71 g-index

208 all docs 208 docs citations

208 times ranked 7511 citing authors

#	Article	IF	Citations
1	Spin dynamics in permalloy nano-ellipses for honeycomb and square lattices. AIP Advances, 2022, 12, 035131.	0.6	1
2	A novel method of images for solving Laplace's equation and deriving demagnetization factors for spheroidal bodies. American Journal of Physics, 2022, 90, 520-528.	0.3	1
3	Simulating Resonant Magnetization Reversals in Nanomagnets. IEEE Transactions on Magnetics, 2021, 57, 1-4.	1.2	2
4	Magnetic Field Sensor Based on a Single Josephson Junction With a Multilayer Ferromagnet/Normal Metal Barrier. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	2
5	Ferromagnetic resonance in single vertices and 2D lattices macro-dipoles of elongated nanoelements: measurements and simulations. Journal of Physics Condensed Matter, 2021, 33, 065803.	0.7	2
6	Ferromagnetic Resonance Modes in the Exchange-Dominated Limit in Cylinders of Finite Length. Physical Review Applied, 2021, 16, .	1.5	4
7	Influence of the Vertex Region on Spin Dynamics in Artificial Kagome Spin Ice. Physical Review Applied, 2020, 14, .	1.5	22
8	Josephson Junctions with Artificial Superparamagnetic Barrier: A Promising Avenue for Nanoscale Magnetometry. Physical Review Applied, 2020, 14, .	1.5	4
9	Control of spin dynamics in artificial honeycomb spin-ice-based nanodisks. Physical Review B, 2020, 101,	1.1	10
10	Direct Observation of Bandgap Oscillations Induced by Optical Phonons in Hybrid Lead Iodide Perovskites. Advanced Functional Materials, 2020, 30, 1907982.	7.8	15
11	Direct Detection of Multiple Backward Volume Modes in Yttrium Iron Garnet at Micron Scale Wavelengths. Proceedings (mdpi), 2019, 26, 48.	0.2	0
12	Direct detection of multiple backward volume modes in yttrium iron garnet at micron scale wavelengths. Physical Review B, 2019, 99, .	1.1	6
13	Infrared-pump electronic-probe of methylammonium lead iodide reveals electronically decoupled organic and inorganic sublattices. Nature Communications, 2019, 10, 482.	5.8	25
14	Angular-dependent spin dynamics of a triad of permalloy macrospins. Physical Review B, 2019, 99, .	1.1	19
15	Study of Surface Character of Micrometer-Scale Dipole-Exchange Spin Waves in an Yttrium Iron Garnet Film. IEEE Transactions on Magnetics, 2019, 55, 1-4.	1.2	2
16	Phase detection of spin waves in yttrium iron garnet and metal induced nonreciprocity. Journal of Applied Physics, 2019, 125, 053905.	1.1	4
17	Magnetostatic spin-waves in an yttrium iron garnet thin film: Comparison between theory and experiment for arbitrary field directions. Journal of Applied Physics, 2019, 126, .	1.1	1
18	Ferromagnetic resonance spectra of permalloy nano-ellipses as building blocks for complex magnonic lattices. Journal of Applied Physics, 2019, 126, .	1.1	16

#	Article	IF	CITATIONS
19	Coupled macrospins: Mode dynamics in symmetric and asymmetric vertices. AIP Advances, 2018, 8, 056020.	0.6	6
20	Propagation of magnetostatic spin waves in an yttrium iron garnet film for out-of-plane magnetic fields. Journal of Magnetism and Magnetic Materials, 2018, 456, 241-250.	1.0	6
21	Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment. AIP Advances, $2018,8,.$	0.6	7
22	Effects of an adjacent metal surface on spin wave propagation. AIP Advances, 2018, 8, 056024.	0.6	7
23	Excitation of the three principal spin waves in yttrium iron garnet using a wavelength-specific multi-element antenna. AIP Advances, 2018, 8, 056015.	0.6	4
24	Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices. Physical Review B, 2018, 97, .	1.1	30
25	Measurements of long-wavelength spin waves for the magnetic field in the Damon-Eshbach, backward-volume and forward-volume geometries of an yttrium iron garnet film. Journal of Applied Physics, 2018, 123, 123902.	1.1	1
26	Thickness dependence of spin wave dynamics in three-fold nano-ellipse clusters. AIP Advances, 2018, 8, 101502.	0.6	1
27	Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. Physical Review Letters, 2018, 121, 127401.	2.9	51
28	Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nature Communications, 2018, 9, 2019.	5.8	71
29	Slow thermal equilibration in methylammonium lead iodide revealed by transient mid-infrared spectroscopy. Nature Communications, 2018, 9, 2792.	5.8	25
30	Investigation of Current Gain in Superconducting-Ferromagnetic Transistors With High-j $\{\}_{m c}$ Acceptor. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.1	6
31	Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies. ACS Energy Letters, 2017, 2, 2463-2469.	8.8	47
32	Unidirectional spin-torque driven magnetization dynamics. Physical Review B, 2017, 95, .	1.1	24
33	Spin Currents in Antiferromagnets. , 2016, , .		O
34	Generation of arbitrary lithographic patterns using Bose-Einstein-condensate interferometry. Physical Review A, 2016, 94, .	1.0	9
35	Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nature Communications, 2016, 7, 12892.	5.8	88
36	Perspective: Interface generation of spin-orbit torques. Journal of Applied Physics, 2016, 120, .	1.1	42

#	Article	lF	CITATIONS
37	Research Update: Spin transfer torques in permalloy on monolayer MoS2. APL Materials, 2016, 4, .	2.2	75
38	Spin Hall effects in metallic antiferromagnets – perspectives for future spin-orbitronics. AIP Advances, 2016, 6, .	0.6	21
39	Gigahertz Acoustic Vibrations of Elastically Anisotropic Indium–Tin-Oxide Nanorod Arrays. Nano Letters, 2016, 16, 5639-5646.	4.5	10
40	Dynamic response of an artificial square spin ice. Physical Review B, 2016, 93, .	1.1	71
41	Interface-driven spin-torque ferromagnetic resonance by Rashba coupling at the interface between nonmagnetic materials. Physical Review B, 2016, 93, .	1.1	65
42	Large Spin-Wave Bullet in a Ferrimagnetic Insulator Driven by the Spin Hall Effect. Physical Review Letters, 2016, 116, 057601.	2.9	66
43	Spin transport through the metallic antiferromagnet FeMn. Physical Review B, 2016, 94, .	1.1	38
44	All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect. Applied Physics Letters, 2016, 108, 052403.	1.5	9
45	Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nature Photonics, 2016, 10, 267-273.	15.6	247
46	All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Physical Review B, 2015 , 92 , .	1.1	95
47	Spin pumping and inverse spin Hall effectsâ€"Insights for future spin-orbitronics (invited). Journal of Applied Physics, 2015, 117, .	1.1	47
48	Ferromagnetic resonance in a topographically modulated permalloy film. Physical Review B, 2015, 91, .	1.1	6
49	Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect. Physical Review B, 2015, 92, .	1.1	48
50	Spin waves in micro-structured yttrium iron garnet nanometer-thick films. Journal of Applied Physics, 2015, 117, .	1.1	50
51	Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties. Journal of the American Chemical Society, 2015, 137, 6804-6819.	6.6	710
52	Magneto-transport anisotropy in epitaxially grown hybrid MnAs/GaAs multilayer. Journal of Applied Physics, 2015, 117, 178903.	1.1	1
53	Magnetic response of aperiodic wire networks based on Fibonacci distortions of square antidot lattices. Journal of Applied Physics, 2015, 117 , .	1.1	13
54	Current–voltage characteristics of Nb–carbon–Nb junctions. Low Temperature Physics, 2014, 40, 191-198.	0.2	3

#	Article	IF	CITATIONS
55	Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Applied Physics Letters, 2014, 104, .	1.5	37
56	Nonstochastic magnetic reversal in artificial quasicrystalline spin ice. Journal of Applied Physics, 2014, 115, .	1.1	6
57	Ferromagnetic resonance study of eightfold artificial ferromagnetic quasicrystals. Journal of Applied Physics, 2014, 115, .	1.1	20
58	Photoionization cross section of1sorthoexcitons in cuprous oxide. Physical Review B, 2014, 89, .	1.1	5
59	Anisotropic spin structure along the easy axis of magnetization in epitaxially grown MnAs/GaAs(100) thin films. Journal of Applied Physics, 2014, 115, 17C105.	1.1	1
60	Optorheological thickening under the pulsed laser photocrosslinking of a polymer. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
61	Controlled Magnetic Reversal in Permalloy Films Patterned into Artificial Quasicrystals. Physical Review Letters, 2013, 111, 077201.	2.9	73
62	Strongly localized magnetization modes in permalloy antidot lattices. Applied Physics Letters, 2013, 102, .	1.5	22
63	Observation of Robust FMR in Permalloy Quasiperiodic Arrays. IEEE Transactions on Magnetics, 2013, 49, 3101-3104.	1.2	2
64	DC and RF measurements of superconducting-ferromagnetic multi-terminal devices. , 2013, , .		2
65	FMR Study of Permalloy Films Patterned Into Square Lattices of Diamond Antidots. IEEE Transactions on Magnetics, 2013, 49, 1029-1032.	1.2	4
66	Broadband ferromagnetic resonance studies on an artificial square spin-ice island array. Journal of Applied Physics, $2013, 113, \ldots$	1.1	20
67	Effect of growth temperature on magnetic and electronic properties of epitaxially grown MnAs thin films on GaAs(100) substrates. Journal of Applied Physics, 2013, 113, 17C307.	1.1	3
68	Generating wave vector specific Damon-Eshbach spin waves in Py using a diffraction grating. Applied Physics Letters, 2012, 101, 052404.	1.5	13
69	Relationships between crystal structure and magnetic properties in type-A heteroepitaxial MnAs thin films. Journal of Applied Physics, 2012, 111, 07E125.	1.1	6
70	Low-field FMR studies of magnetic confinement effects in patterned ferromagnetic thin films., 2011,,.		0
71	Silverâ€coated inverse opals formed from polystyrene spheres for surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2011, 42, 941-944.	1.2	4
72	Probing the Frequency and Wavevector Dependent Response of 3He Using Patterned Piezoelectric Transducers. Journal of Low Temperature Physics, 2010, 159, 606-613.	0.6	1

#	Article	IF	CITATIONS
73	Nonlinear optical processes at quadrupole polariton resonance in mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> Cu </mml:mtext> </mml:mrow> <mml:mrow> <mml:mn> > probed by a Z-scan technique. Physical Review B, 2010, 82, .</mml:mn></mml:mrow></mml:msub></mml:mrow>	2 <td>ı></td>	ı>
74	Four-wave mixing theory for two-photon generation of excitons in thin films of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> Cu </mml:mtext> </mml:mrow> <mml:mno> <mml:mno> <mml:mno> <mml:mno> <mml:mrow> <mml:mno> <mml:mno< td=""><td>2<td>ı>¹/mml:msu</td></td></mml:mno<></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mno></mml:mrow></mml:mno></mml:mno></mml:mno></mml:mno></mml:msub></mml:mrow></mml:math>	2 <td>ı>¹/mml:msu</td>	ı> ¹ /mml:msu
75	Vortex phase boundaries from ferromagnetic resonance measurements in a patterned disc array. Physical Review B, 2009, 80, .	1.1	8
76	Four-wave-mixing theory for two-photon generation of excitons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mtext>Cu</mml:mtext></mml:mrow><mml:mn>: Physical Review B, 2009, 80, .</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	2 <td>ı>¹/mml:msu</td>	ı> ¹ /mml:msu
77	Nonlinear refractive index and three-photon absorption coefficient of poly(9,9-dioctylfluorence). Applied Physics Letters, 2009, 95, 221906.	1.5	9
78	Ferrimagnetism in strained Fe2As thin films on Si(001). Journal of Applied Physics, 2009, 105, 07A946.	1.1	6
79	High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope. Journal of Applied Physics, 2009, 105, .	1.1	0
80	Hysteretic characteristics of low-field microwave absorption of a Co thin film. Journal of Applied Physics, 2009, 106, .	1.1	15
81	Highly efficient broadband second harmonic generation using polydomain epitaxial barium titanate thin film waveguides. Applied Physics Letters, 2008, 92, .	1.5	16
82	Metal-semiconductor transition and magnetic properties of epitaxially grown MnAsâ-GaAs superlattices. Journal of Applied Physics, 2008, 103, 07B501.	1.1	2
83	Highly efficient nonresonant two-photon absorption in ZnO pellets. Applied Physics Letters, 2008, 93, .	1.5	12
84	Broadband ferromagnetic resonance measurements of a micromagnetic disk array using a meander-line technique. Journal of Applied Physics, 2008, 104, 063920.	1.1	6
85	Assembly of ordered magnetic microsphere arrays. Journal of Applied Physics, 2008, 104, 044701.	1.1	1
86	Resonantly enhanced reflection of quadrupole polaritons in Cu2O. Applied Physics Letters, 2008, 93, 121111.	1.5	2
87	Anomalous two-photon generation of excitons in CuCl pellets. Applied Physics Letters, 2008, 92, 051912.	1.5	3
88	Growth and magnetic and electrical-transport properties of NiAs structured Mn1â^'xGaxAs thin films. Journal of Applied Physics, 2008, 103, 07D102.	1.1	2
89	Enhancement of the Josephson critical current in a multiterminal SINIS device under current injection. Physical Review B, 2007, 76, .	1.1	2
90	Dynamic magnetic response of infinite arrays of ferromagnetic particles. Physical Review B, 2007, 75, .	1.1	22

#	Article	IF	Citations
91	Hydroxyapatite Coatings Produced by Right Angle Magnetron Sputtering for Biomedical Applications. Materials Research Society Symposia Proceedings, 2007, 1008, 1.	0.1	1
92	Resonant Switching Using Spin Valves. IEEE Transactions on Magnetics, 2007, 43, 2920-2922.	1.2	0
93	Magnetic Properties of Ge/MnAs Digital Heterostructure. IEEE Transactions on Magnetics, 2007, 43, 3034-3036.	1.2	2
94	Ferromagnetism of Mn/Ge Multilayers Grown by Molecular Beam Epitaxy. Journal of Superconductivity and Novel Magnetism, 2006, 18, 335-338.	0.5	0
95	Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space. Applied Physics Letters, 2006, 89, 031119.	1.5	13
96	Magnetization reversal in the anisotropy-dominated regime using time-dependent magnetic fields. Applied Physics Letters, 2006, 89, 252507.	1.5	54
97	Characteristics of Zr-based single- and multiple-barrier superconducting tunnel junctions. Applied Physics Letters, 2006, 88, 212504.	1.5	1
98	Switching spin valves using rf currents. Applied Physics Letters, 2006, 88, 192515.	1.5	20
99	Postgrowth annealing effects on heteroepitaxial MnAs thin films grown on GaAs(001) and Si(001). Journal of Applied Physics, 2006, 99, 08D513.	1.1	0
100	Room Temperature Ferromagnetism of Ge/MnAs Digital Alloys. Journal of Superconductivity and Novel Magnetism, 2005, 18, 75-78.	0.5	0
101	Growth-Temperature Dependence of Magnetic and Magneto-Transport Properties of Epitaxially Grown MnAs/GaAs Hybrid Multilayers. Journal of Superconductivity and Novel Magnetism, 2005, 18, 105-108.	0.5	0
102	Magnetic and electrical-transport property variations of epitaxially grown MnAs thin films. Journal of Applied Physics, 2005, 97, 10M107.	1.1	1
103	β-phase-domain-free αâ€MnAs thin films on GaAs(001) by postgrowth annealing. Applied Physics Letters, 2005, 87, 092504.	1.5	4
104	Room-temperature ferromagnetism in Cu-doped ZnO thin films. Applied Physics Letters, 2005, 87, 082504.	1.5	362
105	Microscopic study of magnetostatic spin waves. Journal of Applied Physics, 2005, 97, 10E309.	1.1	16
106	Ferromagnetic resonance study of nanoscale ferromagnetic ring lattices. Journal of Applied Physics, 2004, 95, 6645-6647.	1.1	34
107	Instrumentation for cryogenic microwave cavity resonance measurements. Review of Scientific Instruments, 2004, 75, 3158-3163.	0.6	1
108	Electronic and magnetic properties of MnSnAs2. Physica Status Solidi (B): Basic Research, 2004, 241, 1462-1465.	0.7	17

#	Article	IF	Citations
109	Resonant modes of dipole-coupled lattices. Physical Review B, 2004, 70, .	1.1	35
110	Theoretical and experimental study of \hat{l}_{\pm} -Sn deposited on CdTe(001). Physical Review B, 2003, 67, .	1.1	9
111	Hâ^'Tphase diagram ofURu2Si2in high magnetic fields. Physical Review B, 2003, 68, .	1.1	23
112	Large second harmonic response in ZnO thin films. Applied Physics Letters, 2002, 80, 401-403.	1.5	79
113	ULTRASONIC SPECTROMETERS FOR CONDENSED MATTER STUDIES AT VERY HIGH MAGNETIC FIELD. International Journal of Modern Physics B, 2002, 16, 3391-3394.	1.0	1
114	ULTRASONIC MEASUREMENTS AT THE METAMAGNETIC TRANSITION IN URu2Si2. International Journal of Modern Physics B, 2002, 16, 3037-3040.	1.0	0
115	ULTRASONIC AND MAGNETIZATION STUDIES AT THE METAMAGNETIC TRANSITION IN UPt3. International Journal of Modern Physics B, 2002, 16, 3066-3069.	1.0	2
116	Ferromagnetic resonance in periodic particle arrays. Physical Review B, 2002, 66, .	1.1	95
117	ULTRASONIC AND MAGNETIZATION STUDIES AT THE METAMAGNETIC TRANSITION IN UPt3., 2002,,.		O
118	ULTRASONIC SPECTROMETERS FOR CONDENSED MATTER STUDIES AT VERY HIGH MAGNETIC FIELDS. , 2002, , .		0
119	ULTRASONIC MEASUREMENTS AT THE METAMAGNETIC TRANSITION IN URu2Si2. , 2002, , .		0
120	Epitaxial stabilization of orthorhombic cuprous oxide films on MgO(110). Journal of Materials Research, 2001, 16, 914-921.	1.2	14
121	Band structure observed in the current-voltage characteristics of SINININIS-type junctions. JETP Letters, 2000, 71, 342-344.	0.4	2
122	Anisotropy of the Metamagnetic Transition in UPt3. Journal of Low Temperature Physics, 2000, 121, 221-226.	0.6	4
123	Artificially Atomic-scale Ordered Superlattice Alloys for Thermoelectric Applications. Materials Research Society Symposia Proceedings, 2000, 626, 241.	0.1	0
124	Thermal Conductivity Of Bi/Sb Superlattice. Materials Research Society Symposia Proceedings, 2000, 626, 911.	0.1	0
125	A pulser for medium-frequency modulated direct-current reactive sputter deposition of insulators. Review of Scientific Instruments, 2000, 71, 2560-2562.	0.6	1
126	Fabrication of bismuth nanowires with a silver nanocrystal shadowmask. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1326-1328.	0.9	22

#	Article	IF	CITATIONS
127	A numerical study of optical second-harmonic generation in a one-dimensional photonic structure. Applied Physics Letters, 1999, 75, 1676-1678.	1.5	15
128	Growth habit of rhombohedral Bi thin films on zinc-blende CdTe substrates with various orientations. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 3473-3476.	0.9	2
129	Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides. Journal of Applied Physics, 1999, 85, 2497-2501.	1.1	31
130	Anomalous critical current in double-barrier Nb/Al–AlOx–Al–AlOx–Nb devices. Applied Physics Letters, 1999, 74, 1624-1626.	1.5	26
131	Solution Spectra and Stability of Current Biased Josephson Junctions in a Magnetic Field. Journal of Low Temperature Physics, 1999, 115, 45-60.	0.6	3
132	Quantitative mobility spectrum analysis (QMSA) for hall characterization of electrons and holes in anisotropic bands. Journal of Electronic Materials, 1999, 28, 548-552.	1.0	18
133	Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn. Applied Physics Letters, 1999, 75, 2761-2763.	1.5	516
134	Mbe Growth and Thermoelectric Properties OF Bi2Te3 Thin Films. Materials Research Society Symposia Proceedings, 1998, 545, 183.	0.1	0
135	Variable path cryogenic acoustic interferometer. Review of Scientific Instruments, 1998, 69, 4156-4159.	0.6	2
136	Optical second-harmonic generation in sputter-deposited AlN films. Journal of Applied Physics, 1998, 84, 5922-5927.	1.1	29
137	Asymmetric Flux Pinning in a Regular Array of Magnetic Dipoles. Physical Review Letters, 1998, 80, 3614-3617.	2.9	278
138	Superconducting tunnel junction base electrode planarization. Journal of Applied Physics, 1998, 84, 364-367.	1.1	13
139	Steady transfer of a monolayer between two Langmuir troughs via the Marangoni effect. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 831-847.	0.6	2
140	Thermoelectric and Structural Properties of Bi1-xTe1+x Thin Films on CdTe(111). Materials Research Society Symposia Proceedings, 1998, 545, 177.	0.1	1
141	Bi1-xSbx Alloy Thin Film and Superlattice Thermoelectrics. Materials Research Society Symposia Proceedings, 1998, 545, 283.	0.1	1
142	Apparatus to measure the shear modulus of Langmuir monolayers as functions of strain amplitude and frequency. Review of Scientific Instruments, 1997, 68, 1792-1795.	0.6	23
143	Surface plasmon scanning near-field optical microscopy. Journal of Applied Physics, 1997, 82, 5411-5415.	1.1	17
144	A three gun sputtering system for the deposition of superconductor/insulator multilayers. Review of Scientific Instruments, 1997, 68, 2127-2131.	0.6	0

#	Article	IF	CITATIONS
145	Thermoelectric Power of Bi And Bi1â^'xSbx Alloy Thin Films And Superlattices Grown by MBE. Materials Research Society Symposia Proceedings, 1997, 478, 67.	0.1	O
146	Nonlinear Shear Response and Anomalous Pressure Dependence of Viscosity in a Langmuir Monolayer. Langmuir, 1997, 13, 5137-5140.	1.6	39
147	Phases and Phase Transitions in Langmuir Monolayers by Second-Harmonic Generation. Langmuir, 1996, 12, 2298-2302.	1.6	7
148	Microwave impedance measurements on the heavy fermion superconductors UPt3 and UBe13. European Physical Journal D, 1996, 46, 773-774.	0.4	0
149	Fabrication and characteristics of weak links between <i>â-</i> and <i>ĉ</i> -axis normal grains of Y ₁ Ba ₂ Cu ₃ O _{7â~'<i>x</i>} . Journal of Materials Research, 1996, 11, 1086-1093.	1.2	0
150	Vortex structure and cavity modes in stacked double Nb/AlOx/Nb Josephson junctions. Journal of Applied Physics, 1996, 80, 2949-2954.	1.1	1
151	High energy resolution xâ€ray detection based on a coupled Fiske cavity and Josephson junction oscillator. Applied Physics Letters, 1996, 69, 1631-1633.	1.5	2
152	Surfactantâ€driven spreading of a liquid on a vertical surface. Physics of Fluids, 1995, 7, 2640-2647.	1.6	28
153	Scanning plasmon optical microscope. Applied Physics Letters, 1995, 66, 3407-3409.	1.5	31
154	The effect of hydrogen on the formation of carbon nanotubes and fullerenes. Journal of Materials Research, 1995, 10, 1977-1983.	1.2	119
155	High quality <i>a</i> -Si/Nb and <i>a</i> -SiN/NbN artificial multilayers for Josephson applications. Journal of Materials Research, 1994, 9, 1678-1682.	1.2	7
156	Miniature multitarget sputtering system for the in situ xâ€ray study of high Tc multilayer film growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 598-600.	0.9	1
157	Magnetic susceptibility of buckytubes. Journal of Materials Research, 1994, 9, 1578-1582.	1.2	72
158	Ultraviolet second harmonic generation in radioâ€frequency sputterâ€deposited aluminum nitride thin films. Applied Physics Letters, 1994, 65, 1085-1087.	1.5	29
159	Bilâ^'xSbx/Bi superlattice grown by molecular beam epitaxy. Applied Physics Letters, 1994, 64, 1283-1285.	1.5	5
160	Multilayered superconducting tunnel junction xâ€ray detectors. International Journal of Remote Sensing, 1994, 8, 227-234.	1.1	0
161	Second order optical nonlinearities of radio frequency sputterâ€deposited AlN thin films. Applied Physics Letters, 1993, 63, 2875-2877.	1.5	34
162	Ferroelectric Properties of a-Axis Textured BaTiO3 Thin Films. Materials Research Society Symposia Proceedings, 1993, 310, 319.	0.1	1

#	Article	IF	CITATIONS
163	Detection of ultrasound using a tunneling microscope. Journal of Applied Physics, 1992, 72, 861-864.	1.1	28
164	Apparatus with an elastic barrier for radial compression of liquid supported monolayers. Review of Scientific Instruments, 1992, 63, 1822-1825.	0.6	12
165	Large secondâ€harmonic response of C60thin films. Applied Physics Letters, 1992, 60, 810-812.	1.5	90
166	Elastic and nanostructural properties of Cu/Pd superlattices. Journal of Materials Research, $1992, 7, 1356-1369$.	1.2	14
167	Phase relationships in Cuâ€O thin films prepared by sputtering. Applied Physics Letters, 1991, 59, 3174-3176.	1.5	13
168	Anomalous Hall effect in (110)Fe/(110)Cr multilayers. Applied Physics Letters, 1991, 59, 479-481.	1.5	85
169	Fiberâ€optic detection system for capillary waves: An apparatus for studying liquid surfaces and spread monolayers. Review of Scientific Instruments, 1991, 62, 2959-2962.	0.6	16
170	Effect of oxygen partial pressure on theinsitugrowth of Yâ€Baâ€Cuâ€O thin films on SrTiO3. Applied Physics Letters, 1991, 59, 231-233.	1.5	38
171	A new ultrasonic method for measuring elastic moduli in unsupported thin films: Application to Cuâ€Pd superlattices. Journal of Applied Physics, 1990, 68, 1622-1628.	1.1	31
172	Surface phonons in Cu/Ni superlattices. Journal of Applied Physics, 1990, 67, 2873-2877.	1.1	45
173	Magnetotransport studies of epitaxial Cr thin films. Journal of Applied Physics, 1990, 67, 4889-4891.	1.1	23
174	LaSrCuGaO5: A New Brownmillerite-Related Mixed-Metal Copper Oxide. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 184, 335-342.	0.3	2
175	Shubnikov–de Haas effect in thin epitaxial films of gray tin. Applied Physics Letters, 1989, 55, 2643-2645.	1.5	6
176	A compact, bipolar, constant–currentâ€voltage source for superconducting junction characterization. Review of Scientific Instruments, 1989, 60, 3822-3824.	0.6	0
177	Direct measurements of the mechanical properties of polymerized and unpolymerized langmuir-blodgett films. Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 1289-1300.	2.4	1
178	Observation of quantum size effect in the resistivity of thin, gray tin epilayers. Applied Physics Letters, 1989, 55, 1327-1329.	1.5	23
179	Growth ofnâ€ŧype heteroepitaxial films of gray tin on (001) CdTe by molecular beam epitaxy. Applied Physics Letters, 1989, 54, 1010-1012.	1.5	34
180	A New Hybrid Pvd/Omcvd Route to Highâ€Tc Superconducting Thin Films of Tlâ€Baâ€Caâ€Cuâ€O. Materials Research Society Symposia Proceedings, 1989, 169, 619.	0.1	2

#	Article	IF	CITATIONS
181	Surface coupling to collective and single-particle spin modes in normal 3He. Journal of Low Temperature Physics, 1988, 71, 445-461.	0.6	2
182	Xâ€ray diffraction study of a Langmuir monolayer of C21H43OH. Journal of Chemical Physics, 1988, 89, 2257-2270.	1.2	151
183	Propagation and generation of Josephson radiation in superconductor/insulator superlattices. Journal of Applied Physics, 1987, 61, 1957-1966.	1.1	31
184	Apparatus for making superlattice Langmuir–Blodgett films with atmosphere and temperature control. Review of Scientific Instruments, 1987, 58, 822-825.	0.6	5
185	Calculation of Transition Temperatures of Superconductor-Metal Sandwiches. Japanese Journal of Applied Physics, 1987, 26, 1461.	0.8	8
186	Possibility of obtaining coherent short wave radiation from a solid state free electron laser. AIP Conference Proceedings, $1986, , .$	0.3	0
187	Magnetic Transitions in Fe/Cr Superlattices. Materials Research Society Symposia Proceedings, 1986, 77, 515.	0.1	1
188	Technique to produce coherent xâ€ray radiation via laser pumping of a relativistic ion beam. Applied Physics Letters, 1986, 49, 311-313.	1.5	0
189	Possibility of obtaining coherent radiation from a solid state undulator. Journal of Applied Physics, 1986, 60, 177-188.	1.1	39
190	New technique for excitation of bulk and surface spin waves in ferromagnets. Journal of Applied Physics, 1985, 58, 1935-1942.	1.1	12
191	Formation of ultrathin tungsten filaments via selective lowâ€pressure chemical vapor deposition. Journal of Applied Physics, 1985, 58, 987-989.	1.1	5
192	Preparation and structural analysis of SnTe/Sb composition modulated structures. Journal of Applied Physics, 1984, 55, 920-925.	1.1	7
193	Surface waves in SnTe/Sb superlattices. Journal of Applied Physics, 1984, 56, 1550-1551.	1.1	8
194	Dual electron beam evaporator for the preparation of compositionâ€modulated structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 1-4.	0.9	23
195	Anomalous transport properties of a new compositionally modulated semiconductor–semimetal system: PbTe–Bi. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 296-299.	0.9	23
196	V/Fe compositionâ€modulated structures. Journal of Applied Physics, 1984, 55, 2494-2496.	1.1	31
197	Critical field measurements in superconductors using ac inductive techniques. Review of Scientific Instruments, 1983, 54, 1191-1198.	0.6	21
198	Amplification of sound by conduction electrons in a piezoelectric superlattice. Applied Physics Letters, 1983, 43, 43-45.	1.5	5

#	Article	IF	Citations
199	Collective modes in 3He-B. AIP Conference Proceedings, 1983, , .	0.3	o
200	Ferroelectricity and coherent phonon generation in piezoelectric compositionâ€modulated structures. Journal of Applied Physics, 1982, 53, 6834-6838.	1.1	15
201	Magnetization of compositionally modulated CuNi films. Applied Physics Letters, 1981, 38, 424-426.	1.5	104
202	A note on compositionally modulated Cuâ€Ni films with latticeâ€commensurate wavelengths. Applied Physics Letters, 1981, 38, 992-994.	1.5	46
203	Versatile pulsed rf heterodyne spectrometer. Review of Scientific Instruments, 1981, 52, 1509-1516.	0.6	28
204	Anisotropic Ultrasound Propagation in a Cholesteric Liquid Crystal. Molecular Crystals and Liquid Crystals, 1978, 44, 1-22.	0.9	3