Ke Meng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3287829/ke-meng-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26	802	15	26
papers	citations	h-index	g-index
26	1,010	12.3 avg, IF	4.34
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
26	Tailoring Interlayer Spacers for Efficient and Stable Formamidinium-Based Low-Dimensional Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , e2106380	24	5
25	Humidity-Induced Defect-Healing of Formamidinium-Based Perovskite Films. Small, 2021, 17, e2104165	i 11	4
24	Highly Thermostable and Efficient Formamidinium-Based Low-Dimensional Perovskite Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 856-864	16.4	33
23	Self-passivation of low-dimensional hybrid halide perovskites guided by structural characteristics and degradation kinetics. <i>Energy and Environmental Science</i> , 2021 , 14, 2357-2368	35.4	7
22	A nanomesh electrode for self-driven perovskite photodetectors with tunable asymmetric Schottky junctions. <i>Nanoscale</i> , 2021 , 13, 17147-17155	7.7	1
21	Improving efficiency and stability of colorful perovskite solar cells with two-dimensional photonic crystals. <i>Nanoscale</i> , 2020 , 12, 8425-8431	7.7	21
20	In Situ Observation of Vapor-Assisted 2D-3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells. <i>Nano Letters</i> , 2020 , 20, 1296-1304	11.5	39
19	Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. <i>Nature Communications</i> , 2020 , 11, 582	17.4	92
18	A Cross-Linked PCBM Interlayer for Efficient and UV-Stable Methylammonium-Free Perovskite Solar Cells. <i>Energy Technology</i> , 2020 , 8, 2000224	3.5	5
17	Rubidium Ions Enhanced Crystallinity for Ruddlesden-Popper Perovskites. <i>Advanced Science</i> , 2020 , 7, 2002445	13.6	13
16	Suppressing the Excessive Solvated Phase for Dion Dacobson Perovskites with Improved Crystallinity and Vertical Orientation. <i>Solar Rrl</i> , 2020 , 4, 2000371	7.1	15
15	Interfacial Structure and Composition Managements for High-Performance Methylammonium-Free Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2005846	15.6	18
14	Ligand-Modulated Excess PbI Nanosheets for Highly Efficient and Stable Perovskite Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e2000865	24	60
13	In Situ Observation of Crystallization Dynamics and Grain Orientation in Sequential Deposition of Metal Halide Perovskites. <i>Advanced Functional Materials</i> , 2019 , 29, 1902319	15.6	34
12	A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden-Popper Perovskite Solar Cells. <i>Nano Letters</i> , 2019 , 19, 5237-5245	11.5	48
11	Synergistic Improvements in Efficiency and Stability of 2D Perovskite Solar Cells with Metal Ion Doping. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901259	4.6	10
10	In Situ Real-Time Study of the Dynamic Formation and Conversion Processes of Metal Halide Perovskite Films. <i>Advanced Materials</i> , 2018 , 30, 1706401	24	41

LIST OF PUBLICATIONS

9	Controllable Formation of Efficient CuSe Counter Electrodes for Quantum Dot Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, F1566-F1571	3.9	8
8	Wide-angle polarization-free plasmon-enhanced light absorption in perovskite films using silver nanowires. <i>Optics Express</i> , 2017 , 25, 3594-3604	3.3	4
7	Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films. <i>Nano Letters</i> , 2016 , 16, 4166-73	11.5	91
6	X-ray and optical characterizations of DNA-mediated Janus nanostructures. <i>Applied Physics Letters</i> , 2016 , 109, 233101	3.4	1
5	Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23074-23089	13	88
4	Quantum dot and quantum dot-dye co-sensitized solar cells containing organic thiolated isulfide redox electrolyte. <i>Journal of Power Sources</i> , 2015 , 275, 681-687	8.9	23
3	Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode. <i>Journal of Power Sources</i> , 2014 , 248, 218-223	8.9	83
2	BaTiO3 photoelectrodes for CdS quantum dot sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10231-10238	13	32
1	Efficient quasisolid dye- and quantum-dot-sensitized solar cells using thiolate/disulfide redox couple and CoS counter electrode. ACS Applied Materials & Therfaces, 2014, 6, 20768-75	9.5	26