Sarah F Newbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3287692/publications.pdf Version: 2024-02-01

SADAH F NEWBILDY

#	Article	IF	CITATIONS
1	Genome-wide analyses of XRN1-sensitive targets in osteosarcoma cells identify disease-relevant transcripts containing G-rich motifs. Rna, 2021, 27, 1265-1280.	1.6	4
2	ldentification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis. Brain Communications, 2020, 2, fcaa053.	1.5	34
3	Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. PLoS Genetics, 2020, 16, e1009297.	1.5	12
4	Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. , 2020, 16, e1009297.		0
5	Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. , 2020, 16, e1009297.		0
6	Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. , 2020, 16, e1009297.		0
7	Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. , 2020, 16, e1009297.		Ο
8	Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. , 2020, 16, e1009297.		0
9	Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. , 2020, 16, e1009297.		0
10	An Overview of MicroRNAs as Biomarkers of ALS. Frontiers in Neurology, 2019, 10, 186.	1.1	64
11	Circulating MicroRNA Biomarkers in Melanoma: Tools and Challenges in Personalised Medicine. Biomolecules, 2018, 8, 21.	1.8	60
12	DIS3 isoforms vary in their endoribonuclease activity and are differentially expressed within haematological cancers. Biochemical Journal, 2018, 475, 2091-2105.	1.7	12
13	Regulation of cytoplasmic RNA stability: Lessons from <i>Drosophila</i> . Wiley Interdisciplinary Reviews RNA, 2018, 9, e1499.	3.2	11
14	Functions of long non-coding RNAs in human disease and their conservation in Drosophila development. Biochemical Society Transactions, 2017, 45, 895-904.	1.6	46
15	Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs. Frontiers in Immunology, 2017, 8, 1977.	2.2	44
16	A novel role for the 3′-5′ exoribonuclease Dis3L2 in controlling cell proliferation and tissue growth. RNA Biology, 2016, 13, 1286-1299.	1.5	22
17	The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochemical Society Transactions, 2016, 44, 1377-1384.	1.6	32
18	Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS). Scientific Reports, 2016, 6, 28006.	1.6	95

SARAH F NEWBURY

#	Article	IF	CITATIONS
19	RNA-seq reveals post-transcriptional regulation of <i>Drosophila</i> insulin-like peptide <i>dilp8</i> and the neuropeptide-like precursor <i>Nplp2</i> by the exoribonuclease Pacman/XRN1. Nucleic Acids Research, 2016, 44, 267-280.	6.5	45
20	Mechanisms of regulation of mature miRNAs. Biochemical Society Transactions, 2015, 43, 1208-1214.	1.6	76
21	The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules, 2015, 5, 1515-1539.	1.8	42
22	Xrn1/Pacman affects apoptosis and regulates expression of <i>hid</i> and <i>reaper</i> . Biology Open, 2015, 4, 649-660.	0.6	25
23	The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in <i>Drosophila</i> wing imaginal discs. RNA Biology, 2015, 12, 728-741.	1.5	26
24	XRN 5′→3′ exoribonucleases: Structure, mechanisms and functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 590-603.	0.9	290
25	The 5′-3′ exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA <i>miR-277–3p</i> in <i>Drosophila</i> wing imaginal discs. RNA Biology, 2013, 10, 1345-1355.	1.5	26
26	The roles of miRNAs in wing imaginal disc development in <i>Drosophila</i> . Biochemical Society Transactions, 2012, 40, 891-895.	1.6	12
27	Functions of microRNAs in <i>Drosophila</i> development. Biochemical Society Transactions, 2010, 38, 1137-1143.	1.6	14
28	The 5′–3′ exoribonuclease <i>pacman</i> is required for epithelial sheet sealing in <i>Drosophila</i> and genetically interacts with the phosphatase <i>puckered</i> . Biology of the Cell, 2008, 100, 687-701.	0.7	22
29	Drosophila processing bodies in oogenesis. Developmental Biology, 2008, 322, 276-288.	0.9	71
30	The 5′–3′ exoribonuclease Pacman is required for normal male fertility and is dynamically localized in cytoplasmic particles in <i>Drosophila</i> testis cells. Biochemical Journal, 2008, 416, 327-335.	1.7	32
31	Staufen- and FMRP-Containing Neuronal RNPs Are Structurally and Functionally Related to Somatic P Bodies. Neuron, 2006, 52, 997-1009.	3.8	328
32	Drosophilagenetazman, an orthologue of the yeast exosome component Rrp44p/Dis3, is differentially expressed during development. Developmental Dynamics, 2005, 232, 733-737.	0.8	29
33	The 5'-3' exoribonuclease xrn-1 is essential for ventral epithelial enclosure during C. elegans embryogenesis. Rna, 2004, 10, 59-65.	1.6	49
34	Drosophila 5′ → 3′-Exoribonuclease Pacman. Methods in Enzymology, 2001, 342, 293-302.	0.4	10
35	Identification and developmental expression of a 5′–3′ exoribonuclease from Drosophila melanogaster. Mechanisms of Development, 1998, 79, 51-55.	1.7	44