Sandy Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/328766/publications.pdf Version: 2024-02-01

		5126	5622
209	31,537	86	168
papers	citations	h-index	g-index
342	342	342	29972
all docs	docs citations	times ranked	citing authors

SANDY HADDISON

#	Article	IF	CITATIONS
1	Modelling and prediction of wind damage in forest ecosystems of the Sudety Mountains, SW Poland. Science of the Total Environment, 2022, 815, 151972.	3.9	9
2	Ecosystem Photosynthesis in Landâ€6urface Models: A Firstâ€Principles Approach Incorporating Acclimation. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	15
3	The Reading Palaeofire Database: an expanded global resource to document changes in fire regimes from sedimentary charcoal records. Earth System Science Data, 2022, 14, 1109-1124.	3.7	9
4	Leaf morphological traits as adaptations to multiple climate gradients. Journal of Ecology, 2022, 110, 1344-1355.	1.9	18
5	Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Global and Planetary Change, 2022, 211, 103790.	1.6	11
6	Global environmental controls on wildfire burnt area, size, and intensity. Environmental Research Letters, 2022, 17, 065004.	2.2	8
7	Reconstructing burnt area during the Holocene: an Iberian case study. Climate of the Past, 2022, 18, 1189-1201.	1.3	2
8	Assessing anthropogenic influence on fire history during the Holocene in the Iberian Peninsula. Quaternary Science Reviews, 2022, 287, 107562.	1.4	10
9	A new method based on surfaceâ€sample pollen data for reconstructing palaeovegetation patterns. Journal of Biogeography, 2022, 49, 1381-1396.	1.4	3
10	The timing, duration and magnitude of the 8.2Âka event in global speleothem records. Scientific Reports, 2022, 12, .	1.6	9
11	The impact of methodological decisions on climate reconstructions using WA-PLS. Quaternary Research, 2021, 99, 341-356.	1.0	7
12	Predictability of leaf traits with climate and elevation: a case study in Gongga Mountain, China. Tree Physiology, 2021, 41, 1336-1352.	1.4	19
13	An uncertainty-focused database approach to extract spatiotemporal trends from qualitative and discontinuous lake-status histories. Quaternary Science Reviews, 2021, 258, 106870.	1.4	9
14	Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PLoS ONE, 2021, 16, e0246662.	1.1	47
15	The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 2021, 17, 1065-1089.	1.3	107
16	A data–model approach to interpreting speleothem oxygen isotope records from monsoon regions. Climate of the Past, 2021, 17, 1119-1138.	1.3	14
17	The importance of antecedent vegetation and drought conditions as global drivers of burnt area. Biogeosciences, 2021, 18, 3861-3879.	1.3	18
18	Ecoâ€evolutionary optimality as a means to improve vegetation and landâ€surface models. New Phytologist, 2021, 231, 2125-2141.	3.5	71

#	Article	IF	CITATIONS
19	Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytologist, 2021, 232, 1286-1296.	3.5	26
20	High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quaternary Science Reviews, 2021, 268, 107125.	1.4	20
21	Modelling Human-Fire Interactions: Combining Alternative Perspectives and Approaches. Frontiers in Environmental Science, 2021, 9, .	1.5	11
22	Climate influence on the 2019 fires in Amazonia. Science of the Total Environment, 2021, 794, 148718.	3.9	14
23	Optimality-based modelling of climate impacts on global potential wheat yield. Environmental Research Letters, 2021, 16, 114013.	2.2	5
24	Understanding and modelling wildfire regimes: an ecological perspective. Environmental Research Letters, 2021, 16, 125008.	2.2	34
25	Simulating streamflow in the Upper Halda Basin of southeastern Bangladesh using SWAT model. Hydrological Sciences Journal, 2020, 65, 138-151.	1.2	25
26	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
27	An improved statistical approach for reconstructing past climates from biotic assemblages. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200346.	1.0	8
28	The climatic space of European pollen taxa. Ecology, 2020, 101, e03055.	1.5	5
29	Organizing principles for vegetation dynamics. Nature Plants, 2020, 6, 444-453.	4.7	95
30	Global ecosystems and fire: Multiâ€model assessment of fireâ€induced treeâ€cover and carbon storage reduction. Global Change Biology, 2020, 26, 5027-5041.	4.2	55
31	P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geoscientific Model Development, 2020, 13, 1545-1581.	1.3	86
32	A new multivariable benchmark for Last Glacial Maximum climate simulations. Climate of the Past, 2020, 16, 699-712.	1.3	17
33	Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments. Geoscientific Model Development, 2020, 13, 805-824.	1.3	36
34	Extending a first-principles primary production model to predict wheat yields. Agricultural and Forest Meteorology, 2020, 287, 107932.	1.9	17
35	A Method for Generating Coherent Spatially Explicit Maps of Seasonal Paleoclimates From Siteâ€Based Reconstructions. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001630.	1.3	3
36	Vegetation biomass change in China in the 20th century: an assessment based on a combination of multi-model simulations and field observations. Environmental Research Letters, 2020, 15, 094026.	2.2	6

#	Article	IF	CITATIONS
37	Large-scale features and evaluation of the PMIP4-CMIP6 <i>midHolocene</i> simulations. Climate of the Past, 2020, 16, 1847-1872.	1.3	94
38	SISALv2: a comprehensive speleothem isotope database with multiple age–depth models. Earth System Science Data, 2020, 12, 2579-2606.	3.7	53
39	Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 2020, 13, 3299-3318.	1.3	63
40	SISAL: Bringing Added Value to Speleothem Research. Quaternary, 2019, 2, 7.	1.0	17
41	Evaluating model outputs using integrated global speleothem records of climate change since the last glacial. Climate of the Past, 2019, 15, 1557-1579.	1.3	37
42	Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications, 2019, 1, 051005.	0.9	55
43	Multidecadal variability in Atlas cedar growth in Northwest Africa during the last 850 years: Implications for dieback and conservation of an endangered species. Dendrochronologia, 2019, 56, 125599.	1.0	7
44	Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, 57-76.	1.3	85
45	Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences, 2019, 16, 3883-3910.	1.3	32
46	Quantifying leafâ€ŧrait covariation and its controls across climates and biomes. New Phytologist, 2019, 221, 155-168.	3.5	60
47	The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology, 2018, 99, 500-500.	1.5	67
48	Functional trait variation related to gap dynamics in tropical moist forests: A vegetation modelling perspective. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 35, 52-64.	1.1	9
49	Allocation Mechanisms of Non-Structural Carbohydrates of Robinia pseudoacacia L. Seedlings in Response to Drought and Waterlogging. Forests, 2018, 9, 754.	0.9	12
50	Frost and leafâ€size gradients in forests: global patterns and experimental evidence. New Phytologist, 2018, 219, 565-573.	3.5	26
51	Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 2018, 11, 392-400.	5.4	100
52	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	1.3	164
53	The biomass burning contribution to climate–carbon-cycle feedback. Earth System Dynamics, 2018, 9, 663-677.	2.7	24
54	Pollenâ€derived biomes in the Eastern Mediterranean–Black Sea–Caspianâ€Corridor. Journal of Biogeography, 2018, 45, 484-499.	1.4	28

#	Article	IF	CITATIONS
55	The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems. Earth System Science Data, 2018, 10, 1687-1713.	3.7	62
56	Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. PeerJ, 2018, 6, e5457.	0.9	94
57	Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation. Scientific Reports, 2017, 7, 43087.	1.6	1
58	Underlying causes of Eurasian midcontinental aridity in simulations of midâ€Holocene climate. Geophysical Research Letters, 2017, 44, 9020-9028.	1.5	18
59	Biophysical homoeostasis of leaf temperature: A neglected process for vegetation and landâ€surface modelling. Clobal Ecology and Biogeography, 2017, 26, 998-1007.	2.7	50
60	The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 2017, 10, 4035-4055.	1.3	137
61	The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10, 1175-1197.	1.3	159
62	The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 2017, 10, 3979-4003.	1.3	171
63	The ACER pollen and charcoal database: aÂglobal resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 2017, 9, 679-695.	3.7	38
64	Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences, 2016, 13, 4111-4133.	1.3	84
65	Climate-driven expansion of blanket bogs in Britain during the Holocene. Climate of the Past, 2016, 12, 129-136.	1.3	21
66	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	1.3	274
67	Evaluation of a modern-analogue methodology for reconstructing Australian palaeoclimate from pollen. Review of Palaeobotany and Palynology, 2016, 226, 65-77.	0.8	22
68	What have we learnt from palaeoclimate simulations?. Journal of Quaternary Science, 2016, 31, 363-385.	1.1	51
69	A model analysis of climate and CO 2 controls on tree growth and carbon allocation in a semi-arid woodland. Ecological Modelling, 2016, 342, 175-185.	1.2	5
70	Links between tropical Pacific seasonal, interannual and orbital variability during theÂHolocene. Nature Geoscience, 2016, 9, 168-173.	5.4	105
71	Terrestrial biosphere changes over the last 120â€ [–] kyr. Climate of the Past, 2016, 12, 51-73.	1.3	43
72	lce-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geoscientific Model Development, 2015, 8, 3621-3637.	1.3	95

#	Article	IF	CITATIONS
73	Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences, 2015, 12, 5339-5352.	1.3	49
74	Drought and resprouting plants. New Phytologist, 2015, 206, 583-589.	3.5	133
75	Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change, 2015, 5, 735-743.	8.1	198
76	Evaluation of the realism of climate reconstruction using the Coexistence Approach with modern pollen samples from the Qinghai–Tibetan Plateau. Review of Palaeobotany and Palynology, 2015, 219, 172-182.	0.8	9
77	Energy-balance mechanisms underlying consistent large-scale temperature responses in warm and cold climates. Climate Dynamics, 2015, 44, 3111-3127.	1.7	14
78	Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial–interglacial contrast. Biogeosciences, 2014, 11, 6017-6027.	1.3	9
79	Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth. Biogeosciences, 2014, 11, 6711-6724.	1.3	42
80	Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Climate of the Past, 2014, 10, 551-568.	1.3	61
81	Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions. Climate of the Past, 2014, 10, 2237-2252.	1.3	23
82	Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences, 2014, 11, 5087-5101.	1.3	114
83	Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate of the Past, 2014, 10, 221-250.	1.3	193
84	Improved simulation of fire–vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1). Geoscientific Model Development, 2014, 7, 2411-2433.	1.3	28
85	Enhanced Australian carbon sink despite increased wildfire during the 21st century. Environmental Research Letters, 2014, 9, 104015.	2.2	24
86	Climate model benchmarking with glacial and mid-Holocene climates. Climate Dynamics, 2014, 43, 671-688.	1.7	172
87	A new data set of soil mineralogy for dust-cycle modeling. Atmospheric Chemistry and Physics, 2014, 14, 3801-3816.	1.9	166
88	Volatile isoprenoid emissions from plastid to planet. New Phytologist, 2013, 197, 49-57.	3.5	142
89	Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quaternary Science Reviews, 2013, 65, 5-25.	1.4	297
90	Consistent largeâ€scale temperature responses in warm and cold climates. Geophysical Research Letters, 2013, 40, 1817-1823.	1.5	38

#	Article	IF	CITATIONS
91	Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations. Geophysical Research Letters, 2013, 40, 4018-4024.	1.5	51
92	Stable isotope and modelling evidence for CO ₂ as a driver of glacial–interglacial vegetation shifts in southern Africa. Biogeosciences, 2013, 10, 2001-2010.	1.3	31
93	A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences, 2013, 10, 3313-3340.	1.3	119
94	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	1.3	11
95	Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 2013, 10, 929-944.	1.3	257
96	Relationships between Human Population Density and Burned Area at Continental and Global Scales. PLoS ONE, 2013, 8, e81188.	1.1	72
97	Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Climate Dynamics, 2012, 39, 1457-1487.	1.7	102
98	Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles, 2012, 26, .	1.9	201
99	Recent and deep pasts in paleoclimate model intercomparison project. Eos, 2012, 93, 539-539.	0.1	4
100	Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry. Journal of Geophysical Research, 2012, 117, .	3.3	69
101	Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience, 2012, 5, 74-79.	5.4	145
102	Records from the Past, Lessons for the Future. , 2012, , 403-436.		25
103	Evaluation of climate models using palaeoclimatic data. Nature Climate Change, 2012, 2, 417-424.	8.1	779
104	Modeling fire and the terrestrial carbon balance. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	152
105	Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models. Journal of Geophysical Research, 2011, 116, .	3.3	125
106	Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology and Evolution, 2011, 26, 249-259.	4.2	268
107	Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmospheric Chemistry and Physics, 2011, 11, 4371-4389.	1.9	121
108	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002

#	Article	IF	CITATIONS
109	Evidence of a universal scaling relationship for leaf CO ₂ drawdown along an aridity gradient. New Phytologist, 2011, 190, 169-180.	3.5	119
110	Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytologist, 2011, 189, 988-998.	3.5	245
111	Pollen-based continental climate reconstructions at 6 and 21Âka: a global synthesis. Climate Dynamics, 2011, 37, 775-802.	1.7	536
112	Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 2010, 21, 300-317.	1.1	178
113	Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 2010, 3, 525-532.	5.4	486
114	Corrigendum to "The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model" published in Biogeosciences, 7, 1991-2011, doi:10.5194/bg-7-1991-2010, 2010. Biogeosciences, 2010, 7, 2191-2191.	1.3	5
115	The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences, 2010, 7, 1991-2011.	1.3	364
116	Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289, 44-61.	1.0	155
117	Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quaternary Science Reviews, 2010, 29, 2823-2827.	1.4	284
118	Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate of the Past, 2009, 5, 725-767.	1.3	87
119	Ecosystem effects of CO ₂ concentration: evidence from past climates. Climate of the Past, 2009, 5, 297-307.	1.3	106
120	Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2519-2524.	3.3	352
121	Plant morphometric traits and climate gradients in northern China: a meta-analysis using quadrat and flora data. Annals of Botany, 2009, 104, 1217-1229.	1.4	26
122	Simulations of the impacts of dynamic vegetation on interannual and interdecadal variability of Asian summer monsoon with modern and mid-Holocene orbital forcings. Global and Planetary Change, 2009, 66, 235-252.	1.6	20
123	Pollen, plant macrofossil and charcoal records for palaeovegetation reconstruction in the Mediterranean-Black Sea Corridor since the Last Glacial Maximum. Quaternary International, 2009, 197, 12-26.	0.7	25
124	Fire in the Earth System. Science, 2009, 324, 481-484.	6.0	2,330
125	Sensitivity of direct radiative forcing by mineral dust to particle characteristics. Progress in Physical Geography, 2009, 33, 80-102.	1.4	39
126	Modeling and Data Syntheses of Past Climates: Paleoclimate Modelling Intercomparison Project Phase II Workshop; Estes Park, Colorado, 15–19 September 2008. Eos, 2009, 90, 93.	0.1	29

#	Article	IF	CITATIONS
127	Mineral Dust and Climate: Working Group on Dust and Climate Joint INQUA/QUEST Workshop; Villefranche-sur-Mer, France, 19–22 October 2008. Eos, 2009, 90, 139.	0.1	Ο
128	Constraining Carbon Cycle Feedback Using Paleodata: Palaeocarbon Modelling Intercomparison Project Kickoff Workshop; Totnes, United Kingdom, 26–28 January 2009. Eos, 2009, 90, 140.	0.1	5
129	Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 2008, 30, 887-907.	1.7	590
130	Evaluation of coupled ocean–atmosphere simulations of the mid-Holocene using palaeovegetation data from the northern hemisphere extratropics. Climate Dynamics, 2008, 31, 871-890.	1.7	41
131	Climate and human influences on globalÂbiomass burning over the past twoÂmillennia. Nature Geoscience, 2008, 1, 697-702.	5.4	686
132	Simulations of the impact of orbital forcing and ocean on the Asian summer monsoon during the Holocene. Global and Planetary Change, 2008, 60, 505-522.	1.6	19
133	Changes of the equilibrium-line altitude since the Little Ice Age in the Nepalese Himalaya. Annals of Glaciology, 2008, 48, 93-99.	2.8	32
134	LATE QUATERNARY PALEOCLIMATE SIMULATIONS AND MODEL COMPARISONS FOR THE EAST ASIAN MONSOON. Monsoon Asia Integrated Regional Study on Global Change, 2008, , 59-74.	0.0	0
135	Using the past to constrain the future: how the palaeorecord can improve estimates of global warming. Progress in Physical Geography, 2007, 31, 481-500.	1.4	60
136	Plant Functional Types: Are We Getting Any Closer to the Holy Grail?. , 2007, , 149-164.		237
137	Simulated changes in the relationship between tropical ocean temperatures and the western African monsoon during the mid-Holocene. Climate Dynamics, 2007, 28, 533-551.	1.7	31
138	Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change. , 2007, , 175-192.		222
139	Impact of climate variability on present and Holocene vegetation: A model-based study. Ecological Modelling, 2006, 191, 469-486.	1.2	48
140	Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology, 2005, 11, 051013014052005-???.	4.2	353
141	The Late Quaternary glaciation of Africa: A regional synthesis. Quaternary International, 2005, 138-139, 32-54.	0.7	55
142	The depression of tropical snowlines at the last glacial maximum: What can we learn from climate model experiments?. Quaternary International, 2005, 138-139, 202-219.	0.7	30
143	Second phase of paleoclimate modelling intercomparison project. Eos, 2005, 86, 264.	0.1	36
144	Role of Marine Biology in Glacial-Interglacial CO2 Cycles. Science, 2005, 308, 74-78.	6.0	358

#	Article	IF	CITATIONS
145	Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP. Journal of Biogeography, 2004, 31, 1381-1444.	1.4	140
146	Evaluation of PMIP coupled ocean-atmosphere simulations of the Mid-Holocene. Developments in Paleoenvironmental Research, 2004, , 515-533.	7.5	38
147	Global monsoons in the mid-Holocene and oceanic feedback. Climate Dynamics, 2004, 22, 157-182.	1.7	203
148	Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Climate Dynamics, 2004, 22, 223-238.	1.7	117
149	Relative importance of climate and land use in determining present and future global soil dust emission. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	325
150	The role of natural wetlands in the global methane cycle. Eos, 2004, 85, 466-466.	0.1	4
151	Reply to comment by N. M. Mahowald et al. on "Relative importance of climate and land use in determining present and future global soil dust emission― Geophysical Research Letters, 2004, 31, .	1.5	11
152	Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Climate Dynamics, 2003, 20, 663-688.	1.7	172
153	The impact of sea-ice dynamics on the Arctic climate system. Climate Dynamics, 2003, 20, 741-757.	1.7	47
154	Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology, 2003, 9, 983-1004.	4.2	297
155	Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data. Geophysical Research Letters, 2003, 30, .	1.5	123
156	Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research, 2003, 108, .	3.3	261
157	Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research, 2003, 108, .	3.3	429
158	Confronting a burning question: The Role of fire on Earth. Eos, 2003, 84, 23.	0.1	4
159	Contributing to global change science: the ethics, obligations and opportunities of working with palaeoenvironmental databases. Norsk Geografisk Tidsskrift, 2003, 57, 1-8.	0.3	6
160	Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. Journal of Geophysical Research, 2002, 107, AAC 14-1-AAC 14-27.	3.3	453
161	Modeling the role of mineral aerosols in global climate cycles. Eos, 2002, 83, 395.	0.1	3
162	Comparison of palaeoclimate simulations enhances confidence in models. Eos, 2002, 83, 447.	0.1	58

ARTICLE IF CITATIONS Seasonal and interannual variability of the mineral dust cycle under present and glacial climate 138 conditions. Journal of Geophysical Research, 2002, 107, ÁAC 2-1. Climate Changes During the Holocene Recorded by Lakes from Europe., 2002, 191-204. 164 6 Holocene Palaeoenvironmental Changes in North-West Europe: Climatic Implications and the Human Dimension., 2002, , 259-298. Modern pollen samples from alpine vegetation on the Tibetan Plateau. Global Ecology and 166 2.7 138 Biogeography, 2001, 10, 503-519. Diversity of temperate plants in east Asia. Nature, 2001, 413, 129-130. 13.7 410 The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science 168 4.0 392 Reviews, 2001, 54, 43-80. DIRTMAP: the geological record of dust. Earth-Science Reviews, 2001, 54, 81-114. 441 Land-Ocean-Atmosphere Interactions and Monsoon Climate Change., 2001, , 73-86. 170 12 Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. 171 1.4 579 Journal of Biogeography, 2000, 27, 507-519. Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr bp +. Journal of Biogeography, 2000, 27, 172 1.4 151 521-554. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial 1.4 382 maximum. Journal of Biogeography, 2000, 27, 635-664. Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000 14C yr bp. Journal of 174 1.4 98 Biogeography, 2000, 27, 665-683. Dynamical and observational constraints on tropical Pacific sea surface temperatures at the Last 1.5 Clacial Maximum. Geophysical Research Letters, 2000, 27, 105-108. Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. 176 1.7 300 Vegetation, lake-levels and geochemistry. Climate Dynamics, 1999, 15, 823-856. Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling 234 Intercomparison Project (PMIP) simulations and paleodata. Climate Dynamics, 1999, 15, 857-874. Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling 178 1.5 374 Intercomparison Project (PMIP). Geophysical Research Letters, 1999, 26, 859-862. Dust sources and deposition during the last glacial maximum and current climate: A comparison of 179 model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, 3.3 595 1999, 104, 15895-15916. Simulating the Holocene Lake-Level Record of Lake Bysjön, Southern Sweden. Quaternary Research, 180 1.0 32 1998, 49, 62-71.

#	Article	IF	CITATIONS
181	Presentâ€day and midâ€Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography, 1998, 25, 1029-1053.	1.4	245
182	Pollenâ€based biome reconstructions for China at 0 and 6000 years. Journal of Biogeography, 1998, 25, 1055-1069.	1.4	169
183	Evaluation of modelled regional water balance using lake status data. Quaternary Science Reviews, 1998, 17, 535-548.	1.4	36
184	The climate and biomes of Europe at 6000yr BP. Quaternary Science Reviews, 1998, 17, 659-668.	1.4	138
185	Land surface feedbacks and palaeomonsoons in northern Africa. Geophysical Research Letters, 1998, 25, 3615-3618.	1.5	141
186	Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: A data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochemical Cycles, 1998, 12, 35-51.	1.9	244
187	Intercomparison of Simulated Global Vegetation Distributions in Response to 6 kyr BP Orbital Forcing. Journal of Climate, 1998, 11, 2721-2742.	1.2	151
188	Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Climate Dynamics, 1997, 13, 865-881.	1.7	234
189	An evaluation of the simulated water balance of Eurasia and northern Africa at 6000 y BP using lake status data. Climate Dynamics, 1996, 12, 723-735.	1.7	82
190	Late Quaternary Lake-Level Record from Northern Eurasia. Quaternary Research, 1996, 45, 138-159.	1.0	229
191	The climate of Europe 6000 years ago. Climate Dynamics, 1996, 13, 1-9.	1.7	269
192	Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 1996, 384, 623-626.	13.7	365
193	The Response of Northern Hemisphere Extratropical Climate and Vegetation to Orbitally Induced Changes in Insolation during the Last Interglaciation. Quaternary Research, 1995, 43, 174-184.	1.0	96
194	Holocene changes in atmospheric circulation patterns as shown by lake status changes in northern Europe. Boreas, 1995, 24, 260-268.	1.2	115
195	Climatic controls on Holocene lake-level changes in Europe. Climate Dynamics, 1993, 8, 189-200.	1.7	112
196	Reconstruction of Holocene Precipitation Patterns in Europe Using Pollen and Lake-Level Data. Quaternary Research, 1993, 40, 139-149.	1.0	199
197	Late Quaternary lake-level changes and climates of Australia. Quaternary Science Reviews, 1993, 12, 211-231.	1.4	79
198	European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews, 1993, 12, 233-248.	1.4	331

#	Article	IF	CITATIONS
199	Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum. Global Ecology and Biogeography Letters, 1993, 3, 67.	0.6	162
200	Special Paper: A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate. Journal of Biogeography, 1992, 19, 117.	1.4	1,817
201	Influence of insolation and glaciation on atmospheric circulation in the North Atlantic sector: Implications of general circulation model experiments for the Late Quaternary climatology of Europe. Quaternary Science Reviews, 1992, 11, 283-299.	1.4	89
202	Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature, 1992, 360, 658-660.	13.7	177
203	General circulation models, palaeoclimatic data and last interglacial climates. Quaternary International, 1991, 10-12, 231-242.	0.7	15
204	Lake levels and climatic change in eastern North America. Climate Dynamics, 1989, 3, 157-167.	1.7	69
205	Order amid sparse data: Patterns of lake level changes in North America during the Late Quaternary. Mathematical Geosciences, 1988, 20, 167-188.	0.9	0
206	Variations in Lake Levels during the Holocene in North America: An Indicator of Changes in Atmospheric Circulation Patterns. Géographie Physique Et Quaternaire, 1985, 39, 141-150.	0.2	52
207	How has climate responded to natural perturbations?. , 0, , 72-101.		1
208	Seasonal temperature and moisture changes in interior semiâ€arid Spain from the last interglacial to the Late Holocene. Quaternary Research, 0, , 1-13.	1.0	9
209	Speleothem records of monsoon interannual-interdecadal variability through the Holocene. Environmental Research Communications, 0, , .	0.9	1