Philip D Howes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3287454/publications.pdf

Version: 2024-02-01

PHILIP D HOWES

#	Article	IF	CITATIONS
1	Noble Metal Nanoparticle Biosensors: From Fundamental Studies toward Point-of-Care Diagnostics. Accounts of Chemical Research, 2022, 55, 593-604.	15.6	30
2	Precision tuning of rare-earth-doped upconversion nanoparticles via droplet-based microfluidic screening. Journal of Materials Chemistry C, 2021, 9, 925-933.	5.5	13
3	In Situ Nucleic Acid Amplification and Ultrasensitive Colorimetric Readout in a Paperâ€Based Analytical Device Using Silver Nanoplates. Advanced Healthcare Materials, 2021, 10, e2001755.	7.6	17
4	An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chemical Science, 2021, 12, 12733-12743.	7.4	71
5	Broad-Band Spectrum, High-Sensitivity Absorbance Spectroscopy in Picoliter Volumes. Analytical Chemistry, 2021, 93, 7673-7681.	6.5	15
6	A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties. Additive Manufacturing, 2021, 46, 102155.	3.0	63
7	Fluorometric Paper-Based, Loop-Mediated Isothermal Amplification Devices for Quantitative Point-of-Care Detection of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). ACS Sensors, 2021, 6, 742-751.	7.8	53
8	Tuning DNA–nanoparticle conjugate properties allows modulation of nuclease activity. Nanoscale, 2021, 13, 4956-4970.	5.6	9
9	Recent Advances in Droplet Microfluidics. Analytical Chemistry, 2020, 92, 132-149.	6.5	189
10	An ultrasensitive non-noble metal colorimetric assay using starch-iodide complexation for Ochratoxin A detection. Analytica Chimica Acta, 2020, 1135, 29-37.	5.4	14
11	Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 2020, 5, 2701-2723.	7.8	56
12	Microfluidics: Microfluidic Synthesis of Luminescent and Plasmonic Nanoparticles: Fast, Efficient, and Dataâ€Rich (Adv. Mater. Technol. 7/2020). Advanced Materials Technologies, 2020, 5, 2070045.	5.8	0
13	Microfluidic Synthesis of Luminescent and Plasmonic Nanoparticles: Fast, Efficient, and Dataâ€Rich. Advanced Materials Technologies, 2020, 5, .	5.8	49
14	Automated microfluidic screening of ligand interactions during the synthesis of cesium lead bromide nanocrystals. Molecular Systems Design and Engineering, 2020, 5, 1118-1130.	3.4	26
15	Long-armed hexapod nanocrystals of cesium lead bromide. Nanoscale, 2020, 12, 14808-14817.	5.6	1
16	Droplet microfluidics: from proof-of-concept to real-world utility?. Chemical Communications, 2019, 55, 9895-9903.	4.1	93
17	Detection of microRNA biomarkers <i>via</i> inhibition of DNA-mediated liposome fusion. Nanoscale Advances, 2019, 1, 532-536.	4.6	18
18	Rolling Circle Transcription-Amplified Hierarchically Structured Organic–Inorganic Hybrid RNA Flowers for Enzyme Immobilization. ACS Applied Materials & Interfaces, 2019, 11, 22932-22940.	8.0	17

PHILIP D HOWES

#	Article	IF	CITATIONS
19	An Exonuclease I-Assisted Silver-Metallized Electrochemical Aptasensor for Ochratoxin A Detection. ACS Sensors, 2019, 4, 1560-1568.	7.8	64
20	A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano, 2018, 12, 63-73.	14.6	163
21	MicroRNA Detection by DNAâ€Mediated Liposome Fusion. ChemBioChem, 2018, 19, 434-438.	2.6	35
22	Reinforcement Learning for Dynamic Microfluidic Control. ACS Omega, 2018, 3, 10084-10091.	3.5	58
23	A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Analytical and Bioanalytical Chemistry, 2018, 410, 7019-7030.	3.7	37
24	Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nature Communications, 2018, 9, 3237.	12.8	48
25	Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot–DNA Conjugates. ACS Applied Materials & Interfaces, 2018, 10, 28290-28300.	8.0	59
26	Bright, near infrared emitting PLGA–PEG dye-doped CN-PPV nanoparticles for imaging applications. RSC Advances, 2017, 7, 15255-15264.	3.6	23
27	Multi-Amplified Sensing of MicroRNA by a Small DNA Fragment-Driven Enzymatic Cascade Reaction. ACS Sensors, 2017, 2, 111-118.	7.8	38
28	A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots. Nanoscale, 2016, 8, 10087-10095.	5.6	28
29	Design tools for interdisciplinary translation of material experiences. Materials and Design, 2016, 90, 1228-1237.	7.0	49
30	Tailoring Cellular Uptake of Conjugated Polymer Nanoparticles Using Modular Amphiphilic Peptide Capping Ligands. Chemistry of Materials, 2015, 27, 6879-6889.	6.7	25
31	The Perception of Materials through Oral Sensation. PLoS ONE, 2014, 9, e105035.	2.5	16
32	Plasmonic nanomaterials for biodiagnostics. Chemical Society Reviews, 2014, 43, 3835-3853.	38.1	271
33	The Sound and Taste of Materials. , 2014, , 39-49.		6
34	Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346, 1247390.	12.6	842
35	A review: On the development of low melting temperature Pb-free solders. Microelectronics Reliability, 2014, 54, 1253-1273.	1.7	347
36	The use of physical property data to predict the touch perception of materials. Materials & Design, 2012, 42, 238-244.	5.1	43

PHILIP D HOWES

#	Article	IF	CITATIONS
37	Luminescent quantum-dot-sized conjugated polymernanoparticles—nanoparticle formation in a miniemulsion system. Journal of Materials Chemistry, 2011, 21, 1797-1803.	6.7	60
38	Magnetic Conjugated Polymer Nanoparticles as Bimodal Imaging Agents. Journal of the American Chemical Society, 2010, 132, 9833-9842.	13.7	164
39	Phospholipid Encapsulated Semiconducting Polymer Nanoparticles: Their Use in Cell Imaging and Protein Attachment. Journal of the American Chemical Society, 2010, 132, 3989-3996.	13.7	206
40	Colloidal and optical stability of PEG-capped and phospholipid-encapsulated semiconducting polymer nanospheres in different aqueous media. Photochemical and Photobiological Sciences, 2010, 9, 1159-1166.	2.9	14
41	Simple conjugated polymer nanoparticles as biological labels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 2751-2759.	2.1	44
42	Synthesis, characterisation and intracellular imaging of PEG capped BEHP-PPV nanospheres. Chemical Communications, 2009, , 2490.	4.1	70
43	Synthesis and shape control of mercury selenide (HgSe) quantum dots. Journal of Materials Chemistry, 2008, 18, 3474.	6.7	48
44	A signal amplification strategy via enzymatic cascade reactions for ultrasensitive DNA detection. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0