Matthew C Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3287363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Citizen Science Surveillance of Triazole-Resistant <i>Aspergillus fumigatus</i> in United Kingdom Residential Garden Soils. Applied and Environmental Microbiology, 2022, 88, AEM0206121.	1.4	10
2	Microbiome function predicts amphibian chytridiomycosis disease dynamics. Microbiome, 2022, 10, 44.	4.9	12
3	Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 2022, 20, 557-571.	13.6	311
4	Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nature Microbiology, 2022, 7, 663-674.	5.9	82
5	Exploring a novel genomic safe-haven site in the human pathogenic mould Aspergillus fumigatus. Fungal Genetics and Biology, 2022, 161, 103702.	0.9	2
6	Discriminating lineages of Batrachochytrium dendrobatidis using quantitative PCR. Molecular Ecology Resources, 2021, 21, 1452-1459.	2.2	7
7	Emerging infections and the integrative environment-health sciences: the road ahead. Nature Reviews Microbiology, 2021, 19, 133-135.	13.6	8
8	Postâ€epizootic microbiome associations across communities of neotropical amphibians. Molecular Ecology, 2021, 30, 1322-1335.	2.0	6
9	A retrospective â€~real-world' cohort study of azole therapeutic drug monitoring and evolution of antifungal resistance in cystic fibrosis. JAC-Antimicrobial Resistance, 2021, 3, dlab026.	0.9	6
10	Genomic epidemiology of a Cryptococcus neoformans case cluster in Glasgow, Scotland, 2018. Microbial Genomics, 2021, 7, .	1.0	6
11	The need for environmental surveillance to understand the ecology, epidemiology and impact of <i>Cryptococcus</i> infection in Africa. FEMS Microbiology Ecology, 2021, 97, .	1.3	9
12	Azoleâ€resistant <i>Aspergillus fumigatus</i> is highly prevalent in the environment of Vietnam, with marked variability by land use type. Environmental Microbiology, 2021, 23, 7632-7642.	1.8	17
13	Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annual Review of Microbiology, 2021, 75, 673-693.	2.9	22
14	Fungal Genomics in Respiratory Medicine: What, How and When?. Mycopathologia, 2021, 186, 589-608.	1.3	11
15	Molecular Epidemiology of Azole-Resistant Aspergillus fumigatus in France Shows Patient and Healthcare Links to Environmentally Occurring Genotypes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 729476.	1.8	7
16	Batrachochytrium dendrobatidis. Trends in Parasitology, 2021, 37, 933-934.	1.5	2
17	Chytridiomycosis Outbreak in a Chilean Giant Frog () Captive Breeding Program: Genomic Characterization and Pathological Findings. Frontiers in Veterinary Science, 2021, 8, 733357.	0.9	0
18	Trends in the molecular epidemiology and population genetics of emerging <i>Sporothrix</i> species. Studies in Mycology, 2021, 100, 100131-100131.	4.5	14

#	Article	IF	CITATIONS
19	Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis. Scientific Reports, 2021, 11, 22438.	1.6	18
20	Exploring genetic diversity, population structure, and phylogeography in <i>Paracoccidioides</i> species using AFLP markers. Studies in Mycology, 2021, 100, 100129-100129.	4.5	17
21	Chytridiomycosis Outbreak in a Chilean Giant Frog (Calyptocephalella gayi) Captive Breeding Program: Genomic Characterization and Pathological Findings. Frontiers in Veterinary Science, 2021, 8, 733357.	0.9	6
22	Civil society action against transnational corporations: implications for health promotion. Health Promotion International, 2020, 35, 877-887.	0.9	15
23	Amphibian chytrid fungus in Africa – realigning hypotheses and the research paradigm. Animal Conservation, 2020, 23, 239-244.	1.5	9
24	The one health problem of azole resistance in Aspergillus fumigatus: current insights and future research agenda. Fungal Biology Reviews, 2020, 34, 202-214.	1.9	68
25	Confronting and mitigating the risk of COVID-19 associated pulmonary aspergillosis. European Respiratory Journal, 2020, 56, 2002554.	3.1	98
26	A Lowâ€Cost Tebuconazoleâ€Based Screening Test for Azoleâ€Resistant <i>Aspergillus fumigatus</i> . Current Protocols in Microbiology, 2020, 58, e112.	6.5	6
27	Rapid Detection of Azole-Resistant Aspergillus fumigatus in Clinical and Environmental Isolates by Use of a Lab-on-a-Chip Diagnostic System. Journal of Clinical Microbiology, 2020, 58, .	1.8	18
28	Cross-Disciplinary Genomics Approaches to Studying Emerging Fungal Infections. Life, 2020, 10, 315.	1.1	4
29	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	1.8	275
30	Response to Comment on "Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity― Science, 2020, 367, .	6.0	15
31	The global epidemiology of emerging Histoplasma species in recent years. Studies in Mycology, 2020, 97, 100095.	4.5	47
32	Genome-wide mapping using new AFLP markers to explore intraspecific variation among pathogenic Sporothrix species. PLoS Neglected Tropical Diseases, 2020, 14, e0008330.	1.3	22
33	Chytrid fungi and global amphibian declines. Nature Reviews Microbiology, 2020, 18, 332-343.	13.6	200
34	Microbial Grazers May Aid in Controlling Infections Caused by the Aquatic Zoosporic Fungus Batrachochytrium dendrobatidis. Frontiers in Microbiology, 2020, 11, 592286.	1.5	6
35	Campaign-Based Citizen Science for Environmental Mycology: The Science Solstice and Summer Soil-Stice Projects to Assess Drug Resistance in Air- and Soil-Borne <i>Aspergillus fumigatus</i> . Citizen Science: Theory and Practice, 2020, 5, 20.	0.6	6

36 Title is missing!. , 2020, 14, e0008330.

3

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 14, e0008330.		Ο
38	Title is missing!. , 2020, 14, e0008330.		0
39	Title is missing!. , 2020, 14, e0008330.		О
40	Captivity and Infection by the Fungal Pathogen Batrachochytrium salamandrivorans Perturb the Amphibian Skin Microbiome. Frontiers in Microbiology, 2019, 10, 1834.	1.5	39
41	Global epidemiology of emerging Candida auris. Current Opinion in Microbiology, 2019, 52, 84-89.	2.3	178
42	Elevated Prevalence of Azole-Resistant Aspergillus fumigatus in Urban versus Rural Environments in the United Kingdom. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	46
43	Nonrandom Distribution of Azole Resistance across the Global Population of Aspergillus fumigatus. MBio, 2019, 10, .	1.8	71
44	Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 2019, 363, 1459-1463.	6.0	805
45	Mitigating Batrachochytrium salamandrivorans in Europe. Amphibia - Reptilia, 2019, 40, 265-290.	0.1	26
46	A New Lineage of Cryptococcus gattii (VGV) Discovered in the Central Zambezian Miombo Woodlands. MBio, 2019, 10, .	1.8	66
47	Rapid and Sensitive Detection of Azole-Resistant Aspergillus fumigatus by Tandem Repeat Loop-Mediated Isothermal Amplification. Journal of Molecular Diagnostics, 2019, 21, 286-295.	1.2	20
48	Designing Probiotic Therapies With Broad-Spectrum Activity Against a Wildlife Pathogen. Frontiers in Microbiology, 2019, 10, 3134.	1.5	17
49	Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. Journal of Clinical Investigation, 2019, 129, 999-1014.	3.9	112
50	MARDy: Mycology Antifungal Resistance Database. Bioinformatics, 2018, 34, 3233-3234.	1.8	23
51	Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen <i>Candida auris</i> . Emerging Microbes and Infections, 2018, 7, 1-12.	3.0	169
52	Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nature Communications, 2018, 9, 693.	5.8	126
53	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of a Novel and Long-Acting Fungicidal Azole, PC1244, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	24
54	An infectious way to teach students about outbreaks. Epidemics, 2018, 23, 42-48.	1.5	12

#	Article	IF	CITATIONS
55	Decisionâ€making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians. Journal of Applied Ecology, 2018, 55, 1987-1996.	1.9	49
56	A citizens' jury on regulation of McDonald's products and operations in Australia in response to a corporate health impact assessment. Australian and New Zealand Journal of Public Health, 2018, 42, 133-139.	0.8	8
57	Airway persistence by the emerging multiâ€azoleâ€resistant <i>Rasamsonia argillacea</i> complex in cystic fibrosis. Mycoses, 2018, 61, 665-673.	1.8	13
58	Transcriptional Heterogeneity of <i>Cryptococcus gattii</i> VGII Compared with Non-VGII Lineages Underpins Key Pathogenicity Pathways. MSphere, 2018, 3, .	1.3	12
59	Diagnosing Emerging Fungal Threats: A One Health Perspective. Frontiers in Genetics, 2018, 9, 376.	1.1	20
60	Surveillance for Azole-Resistant Aspergillus fumigatus in a Centralized Diagnostic Mycology Service, London, United Kingdom, 1998–2017. Frontiers in Microbiology, 2018, 9, 2234.	1.5	26
61	Breaching Pathogeographic Barriers by the Bat White-Nose Fungus. MBio, 2018, 9, .	1.8	1
62	Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360, 739-742.	6.0	957
63	Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Scientific Reports, 2018, 8, 7772.	1.6	24
64	The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathogens, 2018, 14, e1006978.	2.1	137
65	Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 2018, 360, 621-627.	6.0	389
66	High prevalence of triazole resistance in clinical Aspergillus fumigatus isolates in a specialist cardiothoracic centre. International Journal of Antimicrobial Agents, 2018, 52, 637-642.	1.1	40
67	Chytridiomycosis. , 2018, , 309-335.		3
68	Epidemiological Definitions, Terminology and Classifications with Reference to Fungal Infections of Animals. , 2018, , 17-27.		1
69	Climate structuring of Batrachochytrium dendrobatidis infection in the threatened amphibians of the northern Western Chats, India. Royal Society Open Science, 2018, 5, 180211.	1.1	12
70	Genomic epidemiology of the emerging pathogen <i>Batrachochytrium dendrobatidis</i> from native and invasive amphibian species in Chile. Transboundary and Emerging Diseases, 2018, 65, 309-314.	1.3	13
71	The Case for Adopting the "Species Complex―Nomenclature for the Etiologic Agents of Cryptococcosis. MSphere, 2017, 2, .	1.3	274
72	A Population Genomics Approach to Assessing the Genetic Basis of Within-Host Microevolution Underlying Recurrent Cryptococcal Meningitis Infection. G3: Genes, Genomes, Genetics, 2017, 7, 1165-1176.	0.8	79

#	Article	IF	CITATIONS
73	Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nature Communications, 2017, 8, 15048.	5.8	27
74	In peril from a perfect pathogen. Nature, 2017, 544, 300-301.	13.7	8
75	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. Microbiology Spectrum, 2017, 5, .	1.2	38
76	Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nature Communications, 2017, 8, 14742.	5.8	96
77	Tracking the amphibian pathogens <i>Batrachochytrium dendrobatidis</i> and <i>Batrachochytrium salamandrivorans</i> using a highly specific monoclonal antibody and lateralâ€flow technology. Microbial Biotechnology, 2017, 10, 381-394.	2.0	18
78	Early exposure to Batrachochytrium dendrobatidis causes profound immunosuppression in amphibians. European Journal of Wildlife Research, 2017, 63, 1.	0.7	12
79	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	1.2	105
80	Genomic epidemiology of <i>Cryptococcus</i> yeasts identifies adaptation to environmental niches underpinning infection across an African <scp>HIV</scp> / <scp>AIDS</scp> cohort. Molecular Ecology, 2017, 26, 1991-2005.	2.0	59
81	Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy. Nature Reviews Neurology, 2017, 13, 13-24.	4.9	344
82	Intersectoral action on SDH and equity in Australian health policy. Health Promotion International, 2017, 32, 953-963.	0.9	25
83	Describing Genomic and Epigenomic Traits Underpinning Emerging Fungal Pathogens. Advances in Genetics, 2017, 100, 73-140.	0.8	17
84	MLST-Based Population Genetic Analysis in a Global Context Reveals Clonality amongst Cryptococcus neoformans var. grubii VNI Isolates from HIV Patients in Southeastern Brazil. PLoS Neglected Tropical Diseases, 2017, 11, e0005223.	1.3	59
85	The protective role of sphingosine-1-phosphate against the action of the vascular disrupting agent combretastatin A-4 3-O-phosphate. Oncotarget, 2017, 8, 95648-95661.	0.8	5
86	To what Extent do Australian Health Policy Documents address Social Determinants of Health and Health Equity?. Journal of Social Policy, 2016, 45, 545-564.	0.8	46
87	First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrobial Resistance and Infection Control, 2016, 5, 35.	1.5	535
88	Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150454.	1.8	52
89	Clinical implications of globally emerging azole resistance in <i>Aspergillus fumigatus</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150460.	1.8	243
90	Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus <i>Cryptococcus gattii</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160021.	1.8	30

#	Article	IF	CITATIONS
91	Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160332.	1.8	103
92	Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis. EcoHealth, 2016, 13, 360-367.	0.9	23
93	Calcineurin Orchestrates Lateral Transfer of <i>Aspergillus fumigatus</i> during Macrophage Cell Death. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1127-1139.	2.5	54
94	The global amphibian trade flows through Europe: the need for enforcing and improving legislation. Biodiversity and Conservation, 2016, 25, 2581-2595.	1.2	45
95	Dr Jekyll and Mrs Hyde: Risky hybrid sex by amphibianâ€parasitizing chytrids in the Brazilian Atlantic Forests. Molecular Ecology, 2016, 25, 2961-2963.	2.0	4
96	Mitigating amphibian chytridiomycoses in nature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160207.	1.8	125
97	Host species vary in infection probability, sub-lethal effects and costs of immune response when exposed to an amphibian parasite. Scientific Reports, 2015, 5, 10828.	1.6	47
98	Short Term Minimum Water Temperatures Determine Levels of Infection by the Amphibian Chytrid Fungus in Alytes obstetricans Tadpoles. PLoS ONE, 2015, 10, e0120237.	1.1	24
99	Elevated Corticosterone Levels and Changes in Amphibian Behavior Are Associated with Batrachochytrium dendrobatidis (Bd) Infection and Bd Lineage. PLoS ONE, 2015, 10, e0122685.	1.1	47
100	Genotypic Diversity Is Associated with Clinical Outcome and Phenotype in Cryptococcal Meningitis across Southern Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003847.	1.3	94
101	Emerging disease in UK amphibians. Veterinary Record, 2015, 176, 468-468.	0.2	52
102	Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. EcoHealth, 2015, 12, 404-407.	0.9	45
103	Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar. Scientific Reports, 2015, 5, 8633.	1.6	51
104	Contextâ€dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 2015, 13, 195-202.	1.9	147
105	Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing. MBio, 2015, 6, e00536.	1.8	171
106	Successful elimination of a lethal wildlife infectious disease in nature. Biology Letters, 2015, 11, 20150874.	1.0	135
107	Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii. MBio, 2015, 6, e00868-15.	1.8	101
108	Consistency of Published Results on the Pathogen Batrachochytrium dendrobatidis in Madagascar: Formal Comment on Kolby et al. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar. PLoS ONE, 2015, 10, e0135900.	1.1	2

#	Article	IF	CITATIONS
109	Illuminating Choices for Library Prep: A Comparison of Library Preparation Methods for Whole Genome Sequencing of Cryptococcus neoformans Using Illumina HiSeq. PLoS ONE, 2014, 9, e113501.	1.1	44
110	Cryptococcus gattii in North American Pacific Northwest: Whole-Population Genome Analysis Provides Insights into Species Evolution and Dispersal. MBio, 2014, 5, e01464-14.	1.8	126
111	Assessing Risk and Guidance on Monitoring of <i>Batrachochytrium dendrobatidis</i> in Europe through Identification of Taxonomic Selectivity of Infection. Conservation Biology, 2014, 28, 213-223.	2.4	46
112	Microscopic Aquatic Predators Strongly Affect Infection Dynamics of a Globally Emerged Pathogen. Current Biology, 2014, 24, 176-180.	1.8	117
113	Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science, 2014, 346, 630-631.	6.0	421
114	Molecular detection of Pythium insidiosum from soil in Thai agricultural areas. International Journal of Medical Microbiology, 2014, 304, 321-326.	1.5	25
115	Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. Journal of Clinical Investigation, 2014, 124, 2000-2008.	3.9	130
116	<i>Batrachochytrium salamandrivorans</i> sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15325-15329.	3.3	528
117	A SURVEY FOR <i>BATRACHOCHYTRIUM DENDROBATIDIS</i> IN ENDANGERED AND HIGHLY SUSCEPTIBLE VIETNAMESE SALAMANDERS (<i>TYLOTOTRITON</i> SPP.). Journal of Zoo and Wildlife Medicine, 2013, 44, 627-633.	0.3	8
118	Species-specific PCR to describe local-scale distributions of four cryptic species in the Penicillium chrysogenum complex. Fungal Ecology, 2013, 6, 419-429.	0.7	11
119	Contextâ€dependent amphibian host population response to an invading pathogen. Ecology, 2013, 94, 1795-1804.	1.5	64
120	Evidence of chytridâ€mediated population declines in common midwife toad in <scp>S</scp> erra da <scp>E</scp> strela, <scp>P</scp> ortugal. Animal Conservation, 2013, 16, 306-315.	1.5	24
121	Evidence for the Introduction of Lethal Chytridiomycosis Affecting Wild Betic Midwife Toads (Alytes) Tj ETQq1 1	0.784314 0.9	rgBT /Overlo
122	Batrachochytrium dendrobatidis Infection and Lethal Chytridiomycosis in Caecilian Amphibians (Gymnophiona). EcoHealth, 2013, 10, 173-183.	0.9	54
123	Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genetics, 2013, 9, e1003771.	1.5	45
124	Chromosomal Copy Number Variation, Selection and Uneven Rates of Recombination Reveal Cryptic Genome Diversity Linked to Pathogenicity. PLoS Genetics, 2013, 9, e1003703.	1.5	104
125	First parasitological survey of Endangered Bornean elephants Elephas maximus borneensis. Endangered Species Research, 2013, 21, 223-230.	1.2	13
126	Using False Discovery Rates to Benchmark SNP-callers in next-generation sequencing projects. Scientific Reports, 2013, 3, 1512.	1.6	37

#	Article	IF	CITATIONS
127	A Non-Invasive Stress Assay Shows That Tadpole Populations Infected with Batrachochytrium dendrobatidis Have Elevated Corticosterone Levels. PLoS ONE, 2013, 8, e56054.	1.1	66
128	Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus. PLoS ONE, 2013, 8, e56802.	1.1	314
129	Resistance to Chytridiomycosis in European Plethodontid Salamanders of the Genus Speleomantes. PLoS ONE, 2013, 8, e63639.	1.1	19
130	Geographically Structured Populations of Cryptococcus neoformans Variety grubii in Asia Correlate with HIV Status and Show a Clonal Population Structure. PLoS ONE, 2013, 8, e72222.	1.1	83
131	Clonality Despite Sex: The Evolution of Host-Associated Sexual Neighborhoods in the Pathogenic Fungus Penicillium marneffei. PLoS Pathogens, 2012, 8, e1002851.	2.1	44
132	Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, 484, 186-194.	13.7	2,478
133	Global and endemic Asian lineages of the emerging pathogenic fungus <i>Batrachochytrium dendrobatidis</i> widely infect amphibians in China. Diversity and Distributions, 2012, 18, 307-318.	1.9	65
134	Sex, drugs and recombination: the wild life of <i>Aspergillus</i> . Molecular Ecology, 2012, 21, 1305-1306.	2.0	13
135	The Gut Fungus Basidiobolus ranarum Has a Large Genome and Different Copy Numbers of Putatively Functionally Redundant Elongation Factor Genes. PLoS ONE, 2012, 7, e31268.	1.1	21
136	Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18732-18736.	3.3	375
137	Epidemiology and Evolution of Fungal Pathogens in Plants and Animals. , 2011, , 59-132.		17
138	The rise and rise of emerging infectious fungi challenges food security and ecosystem health. Fungal Biology Reviews, 2011, 25, 181-188.	1.9	32
139	The need for jumpstarting amphibian genome projects. Trends in Ecology and Evolution, 2011, 26, 378-379.	4.2	9
140	Genetic Diversity, Recombination, and Divergence in Animal Associated Penicillium dipodomyis. PLoS ONE, 2011, 6, e22883.	1.1	10
141	Climate change, chytridiomycosis or condition: an experimental test of amphibian survival. Global Change Biology, 2011, 17, 667-675.	4.2	65
142	Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus. Molecular Ecology, 2011, 20, 4288-4301.	2.0	49
143	Ambient Ultraviolet B Radiation and Prevalence of Infection by Batrachochytrium dendrobatidis in Two Amphibian Species. Conservation Biology, 2011, 25, 975-982.	2.4	31
144	Common Reservoirs for <i>Penicillium marneffei</i> Infection in Humans and Rodents, China. Emerging Infectious Diseases, 2011, 17, 209-214.	2.0	71

#	Article	IF	CITATIONS
145	Low Diversity Cryptococcus neoformans Variety grubii Multilocus Sequence Types from Thailand Are Consistent with an Ancestral African Origin. PLoS Pathogens, 2011, 7, e1001343.	2.1	74
146	Population Genetic Structure of Clinical and Environmental Isolates of Blastomyces dermatitidis, Based on 27 Polymorphic Microsatellite Markers. Applied and Environmental Microbiology, 2011, 77, 5123-5131.	1.4	34
147	Presence of Batrachochytrium dendrobatidis in feral populations of Xenopus laevis in Chile. Biological Invasions, 2010, 12, 1641-1646.	1.2	37
148	Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecology Letters, 2010, 13, 372-382.	3.0	162
149	Health equity and sustainability: extending the work of the Commission on the Social Determinants of Health. Critical Public Health, 2010, 20, 311-322.	1.4	11
150	Frequency and Evolution of Azole Resistance in <i>Aspergillus fumigatus</i> Associated with Treatment Failure1. Emerging Infectious Diseases, 2009, 15, 1068-1076.	2.0	692
151	Expression Profiling the Temperature-Dependent Amphibian Response to Infection by Batrachochytrium dendrobatidis. PLoS ONE, 2009, 4, e8408.	1.1	135
152	Rapid Global Expansion of the Fungal Disease Chytridiomycosis into Declining and Healthy Amphibian Populations. PLoS Pathogens, 2009, 5, e1000458.	2.1	186
153	The Amphibian Trade: Bans or Best Practice?. EcoHealth, 2009, 6, 148-151.	0.9	35
154	The Link Between Rapid Enigmatic Amphibian Decline and the Globally Emerging Chytrid Fungus. EcoHealth, 2009, 6, 358-372.	0.9	56
155	Proteomic and phenotypic profiling of the amphibian pathogen <i>Batrachochytrium dendrobatidis</i> shows that genotype is linked to virulence. Molecular Ecology, 2009, 18, 415-429.	2.0	138
156	Endemic and introduced haplotypes of <i>Batrachochytrium dendrobatidis</i> in Japanese amphibians: sink or source?. Molecular Ecology, 2009, 18, 4731-4733.	2.0	11
157	Life history tradeoffs influence mortality associated with the amphibian pathogen <i>Batrachochytrium dendrobatidis</i> . Oikos, 2009, 118, 783-791.	1.2	194
158	Consensus multi-locus sequence typing scheme for <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> . Medical Mycology, 2009, 47, 561-570.	0.3	408
159	Global Emergence of <i>Batrachochytrium dendrobatidis</i> and Amphibian Chytridiomycosis in Space, Time, and Host. Annual Review of Microbiology, 2009, 63, 291-310.	2.9	564
160	Clobal Amphibian Extinction Risk Assessment for the Panzootic Chytrid Fungus. Diversity, 2009, 1, 52-66.	0.7	141
161	A molecular perspective: biology of the emerging pathogen Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 2009, 92, 131-147.	0.5	28
162	Using itraconazole to clear Batrachochytrium dendrobatidis infection, and subsequent depigmentation of Alytes muletensis tadpoles. Diseases of Aquatic Organisms, 2009, 83, 257-260.	0.5	83

#	Article	IF	CITATIONS
163	Non-invasive sampling methods for the detection of Batrachochytrium dendrobatidis in archived amphibians. Diseases of Aquatic Organisms, 2009, 84, 163-166.	0.5	31
164	Invasive pathogens threaten species recovery programs. Current Biology, 2008, 18, R853-R854.	1.8	113
165	Environmental detection of Penicillium marneffei and growth in soil microcosms in competition with Talaromyces stipitatus. Fungal Ecology, 2008, 1, 49-56.	0.7	13
166	Dr Elizabeth (Janie) Pryce-Miller, 7th November 1976 to 11th September 2007. Fungal Ecology, 2008, 1, 2-3.	0.7	1
167	Molecular toolkit unlocks life cycle of the panzootic amphibian pathogen <i>Batrachochytrium dendrobatidis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17209-17210.	3.3	8
168	Persistence of the emerging pathogen <i>Batrachochytrium dendrobatidis</i> outside the amphibian host greatly increases the probability of host extinction. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 329-334.	1.2	91
169	Isolation and identification of the human pathogen <i>Pythium insidiosum</i> from environmental samples collected in Thai agricultural areas. Medical Mycology, 2008, 46, 41-52.	0.3	65
170	Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 253-260.	1.2	200
171	Taxonomic and diagnostic markers for identification of <i>Coccidioides immitis</i> and <i>Coccidioides posadasii</i> . Medical Mycology, 2007, 45, 385-393.	0.3	46
172	Multilocus sequence typing (MLST) and multilocus microsatellite typing (MLMT) in fungi. , 2007, , 340-354.		0
173	The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biology Reviews, 2007, 21, 2-9.	1.9	193
174	Potential interactions between amphibian immunity, infectious disease and climate change. Animal Conservation, 2007, 10, 420-421.	1.5	9
175	Polymorphic microsatellite markers for the human oomycete pathogen Pythium insidiosum. Molecular Ecology Notes, 2007, 7, 1088-1090.	1.7	6
176	Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Diseases of Aquatic Organisms, 2007, 77, 105-112.	0.5	78
177	The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biology Letters, 2006, 2, 455-459.	1.0	265
178	Introduction: species and speciation in micro-organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1897-1898.	1.8	11
179	Penicillium marneffei Infection and Recent Advances in the Epidemiology and Molecular Biology Aspects. Clinical Microbiology Reviews, 2006, 19, 95-110.	5.7	445
180	Penicillium marneffei Infection and Recent Advances in the Epidemiology and Molecular Biology Aspects. Clinical Microbiology Reviews, 2006, 19, 95-110.	5.7	262

#	Article	IF	CITATIONS
181	Chytrid Fungus in Europe. Emerging Infectious Diseases, 2005, 11, 1639-1641.	2.0	101
182	Low Effective Dispersal of Asexual Genotypes in Heterogeneous Landscapes by the Endemic Pathogen Penicillium marneffei. PLoS Pathogens, 2005, 1, e20.	2.1	52
183	Emergence of amphibian chytridiomycosis in Britain. Veterinary Record, 2005, 157, 386-387.	0.2	37
184	Multilocus Microsatellite Typing System for Penicillium marneffei Reveals Spatially Structured Populations. Journal of Clinical Microbiology, 2004, 42, 5065-5069.	1.8	48
185	Role of Cannomys badius as a Natural Animal Host of Penicillium marneffei in India. Journal of Clinical Microbiology, 2004, 42, 5070-5075.	1.8	61
186	A highly discriminatory multilocus microsatellite typing (MLMT) system for Penicillium marneffei. Molecular Ecology Notes, 2004, 4, 515-518.	1.7	29
187	Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infectious Diseases, The, 2004, 4, 672-683.	4.6	93
188	Fungal multilocus sequence typing — it's not just for bacteria. Current Opinion in Microbiology, 2003, 6, 351-356.	2.3	153
189	Disease surveillance in recombining pathogens: Multilocus genotypes identify sources of human Coccidioides infections. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9067-9071.	3.3	45
190	Molecular and phenotypic description of <i>Coccidioides posadasii</i> sp. nov., previously recognized as the non-California population of <i>Coccidioides immitis</i> . Mycologia, 2002, 94, 73-84.	0.8	404
191	Molecular and Phenotypic Description of Coccidioides posadasii sp. nov., Previously Recognized as the Non-California Population of Coccidioides immitis. Mycologia, 2002, 94, 73.	0.8	241
192	Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis. Mycologia, 2002, 94, 73-84.	0.8	173
193	Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos. Teratology, 2001, 64, 114-122.	1.8	74
194	Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4558-4562.	3.3	237
195	A Test for Concordance Between the Multilocus Genealogies of Genes and Microsatellites in the Pathogenic Fungus Coccidioides immitis. Molecular Biology and Evolution, 2000, 17, 1164-1174.	3.5	90
196	Inferring infection processes of a parasitic nematode using population genetics. Parasitology, 2000, 120, 185-194.	0.7	14
197	Soil isolation and molecular identification of <i>Coccidioides immitis</i> . Mycologia, 2000, 92, 406-410.	0.8	67
198	Soil Isolation and Molecular Identification of Coccidioides immitis. Mycologia, 2000, 92, 406.	0.8	48

#	Article	IF	CITATIONS
199	Phylogenetic Species Recognition and Species Concepts in Fungi. Fungal Genetics and Biology, 2000, 31, 21-32.	0.9	1,585
200	Pathogenic Clones versus Environmentally Driven Population Increase: Analysis of an Epidemic of the Human Fungal Pathogen <i>Coccidioides immitis</i> . Journal of Clinical Microbiology, 2000, 38, 807-813.	1.8	84
201	Primers for genotyping single nucleotide polymorphisms and microsatellites in the pathogenic fungus Coccidioides immitis. Molecular Ecology, 1999, 8, 1082-1084.	2.0	38
202	THEEVOLUTION OFASEXUALFUNGI: Reproduction, Speciation and Classification. Annual Review of Phytopathology, 1999, 37, 197-246.	3.5	472
203	The population genetic structure of the facultatively sexual parasitic nematode Strongyloides ratti in wild rats. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 703-709.	1.2	47
204	Microsatellites of the parasitic nematode Strongyloides ratti. Molecular and Biochemical Parasitology, 1996, 80, 221-224.	0.5	27
205	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. , 0, , 787-809.		6
206	The Evolutionary Implications of an Asexual Lifestyle Manifested by Penicillium marneffei. , 0, , 201-212.		3
207	Cryptococcosis in Asia. , 0, , 287-297.		3