
Bindu D Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3287348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ergothioneine: A Stress Vitamin with Antiaging, Vascular, and Neuroprotective Roles?. Antioxidants and Redox Signaling, 2022, 36, 1306-1317.	2.5	20
2	Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Science Signaling, 2022, 15, eabh3066.	1.6	4
3	Revealing Sex and Alzheimer's Diseaseâ€related Changes in the Spatial Localization of Brain Lipids in Mice using Mass Spectrometry Imaging. FASEB Journal, 2022, 36, .	0.2	1
4	Cysteine metabolism and hydrogen sulfide signaling in Huntington's disease. Free Radical Biology and Medicine, 2022, 186, 93-98.	1.3	17
5	Cystathionine γ-lyase exacerbates Helicobacter pylori immunopathogenesis by promoting macrophage metabolic remodeling and activation. JCI Insight, 2022, 7, .	2.3	8
6	Signaling by cGAS–STING in Neurodegeneration, Neuroinflammation, and Aging. Trends in Neurosciences, 2021, 44, 83-96.	4.2	121
7	Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biology, 2021, 38, 101772.	3.9	126
8	Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	124
9	Quantitative measurement of reactive oxygen species in ex vivo mouse brain slices. STAR Protocols, 2021, 2, 100332.	0.5	2
10	Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	140
11	Signaling Overlap between the Golgi Stress Response and Cysteine Metabolism in Huntington's Disease. Antioxidants, 2021, 10, 1468.	2.2	10
12	BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain—Implications for Neurodegeneration. Antioxidants, 2020, 9, 671.	2.2	17
13	Loss of biliverdin reductaseâ€a (BVRâ€A) impairs beneficial effects of CNS insulin on brain energy metabolism favoring the development of Alzheimer's disease (AD) neuropathology. Alzheimer's and Dementia, 2020, 16, e039511.	0.4	0
14	Inositol polyphosphate multiâ€kinase is a novel regulator of reverseâ€transsulfuration pathway. FASEB Journal, 2020, 34, 1-1.	0.2	0
15	Regulators of the transsulfuration pathway. British Journal of Pharmacology, 2019, 176, 583-593.	2.7	205
16	Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. Cell Chemical Biology, 2019, 26, 1450-1460.e7.	2.5	66
17	Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metabolism, 2019, 30, 1152-1170.e13.	7.2	236
18	The glutathione cycle shapes synaptic glutamate activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2701-2706.	3.3	99

Bindu D Paul

#	Article	IF	CITATIONS
19	Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Frontiers in Molecular Neuroscience, 2019, 12, 68.	1.4	48
20	Histone H2AX promotes neuronal health by controlling mitochondrial homeostasis. Proceedings of the United States of America, 2019, 116, 7471-7476.	3.3	25
21	Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Frontiers in Neurology, 2019, 10, 1315.	1.1	46
22	Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxidants and Redox Signaling, 2019, 30, 1450-1499.	2.5	90
23	Cysteine Metabolism in Neuronal Redox Homeostasis. Trends in Pharmacological Sciences, 2018, 39, 513-524.	4.0	198
24	Histone H2AX deficiency causes neurobehavioral deficits and impaired redox homeostasis. Nature Communications, 2018, 9, 1526.	5.8	25
25	Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 780-785.	3.3	84
26	Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochemical Pharmacology, 2018, 149, 101-109.	2.0	175
27	Transcriptional control of amino acid homeostasis is disrupted in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8843-8848.	3.3	63
28	Allele-specific regulation of mutantHuntingtinby Wig1, a downstream target of p53. Human Molecular Genetics, 2016, 25, ddw115.	1.4	5
29	Protein Sulfhydration. Methods in Enzymology, 2015, 555, 79-90.	0.4	57
30	Huntington's disease: Neural dysfunction linked to inositol polyphosphate multikinase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9751-9756.	3.3	34
31	H 2 S: A Novel Gasotransmitter that Signals by Sulfhydration. Trends in Biochemical Sciences, 2015, 40, 687-700.	3.7	267
32	Modes of Physiologic H ₂ S Signaling in the Brain and Peripheral Tissues. Antioxidants and Redox Signaling, 2015, 22, 411-423.	2.5	68
33	Neurodegeneration in Huntington's disease involves loss of cystathionine Î ³ -Iyase. Cell Cycle, 2014, 13, 2491-2493.	1.3	38
34	Serine Racemase Regulated by Binding to Stargazin and PSD-95. Journal of Biological Chemistry, 2014, 289, 29631-29641.	1.6	41
35	Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease. Nature, 2014, 509, 96-100.	13.7	336
36	Golgi Protein ACBD3 Mediates Neurotoxicity Associated with Huntington's Disease. Cell Reports, 2013, 4, 890-897.	2.9	54

Bindu D Paul

#	Article	lF	CITATIONS
37	Sulfhydration mediates neuroprotective actions of parkin. Nature Communications, 2013, 4, 1626.	5.8	265
38	Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16181-16186.	3.3	33
39	Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20575-20580.	3.3	39
40	Inositol Polyphosphate Multikinase Is a Coactivator of p53-Mediated Transcription and Cell Death. Science Signaling, 2013, 6, ra22.	1.6	45
41	The conversion of H2S to sulfane sulfur: authors' response. Nature Reviews Molecular Cell Biology, 2012, 13, 803-803.	16.1	8
42	Hydrogen Sulfide-Linked Sulfhydration of NF-κB Mediates Its Antiapoptotic Actions. Molecular Cell, 2012, 45, 13-24.	4.5	626
43	H2S signalling through protein sulfhydration and beyond. Nature Reviews Molecular Cell Biology, 2012, 13, 499-507.	16.1	716
44	Novel Functions of Protein Arginine Methyltransferase 1 in Thyroid Hormone Receptor-Mediated Transcription and in the Regulation of Metamorphic Rate in <i>Xenopus laevis</i> . Molecular and Cellular Biology, 2009, 29, 745-757.	1.1	48
45	Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proceedings of the United States of America, 2009, 106, 5171-5176.	3.3	403
46	SRC-p300 Coactivator Complex Is Required for Thyroid Hormone-induced Amphibian Metamorphosis. Journal of Biological Chemistry, 2007, 282, 7472-7481.	1.6	50
47	Contrasting Effects of Two Alternative Splicing Forms of Coactivator-Associated Arginine Methyltransferase 1 on Thyroid Hormone Receptor-Mediated Transcription in Xenopus laevis. Molecular Endocrinology, 2007, 21, 1082-1094.	3.7	29
48	A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. Mechanisms of Development, 2007, 124, 476-488.	1.7	56
49	Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. General and Comparative Endocrinology, 2006, 145, 1-19.	0.8	197
50	Gene-specific Changes in Promoter Occupancy by Thyroid Hormone Receptor during Frog Metamorphosis. Journal of Biological Chemistry, 2005, 280, 41222-41228.	1.6	48
51	Tissue- and Gene-specific Recruitment of Steroid Receptor Coactivator-3 by Thyroid Hormone Receptor during Development. Journal of Biological Chemistry, 2005, 280, 27165-27172.	1.6	54
52	Transgenic Analysis Reveals that Thyroid Hormone Receptor Is Sufficient To Mediate the Thyroid Hormone Signal in Frog Metamorphosis. Molecular and Cellular Biology, 2004, 24, 9026-9037.	1.1	122
53	Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis. Cell Research, 2003, 13, 459-464.	5.7	32
54	An artificial regulatory circuit for stable expression of DNA-binding proteins in a T7 expression system. Gene, 1997, 190, 11-15.	1.0	3